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Abstract

We develop an off-lattice kinetic Monte Carlo model, based on the dimer saddle-point finding
method, suitable for simulating the interaction of hydrogen with crystal defects in iron (such as
vacancies, grain-boundaries and dislocations), over timescales not achievable with classical
methods including molecular dynamics. The model is used to interrogate the mechanisms of hy-
drogen embrittlement, causing severe loss of ductility in steels with complicated microstructures,
focusing on hydrogen-vacancy systems.
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Chapter 1

Introduction

In this project we develop enhancement to the off-lattice kinetic Monte Carlo (OLKMC) method.
Our main contribution is an error-tolerant replacement for topological analysis of atomic
local-environments. The motivation for our research is building a general simulation framework
capable of modelling the complex interactions between crystal defects and hydrogen (H) in iron
(Fe), into the timescales required to study the mechanisms of hydrogen embrittlement.

We apply our OLKMC implementation to study the diffusion of vacancy clusters in
the presence of hydrogen. We demonstrate OLKMC is capable of reaching embrittlement
timescales, of-the-order-of seconds, while simultaneously resolving the atomic motion of
H-atoms. Through OLKMC we are able to study the atomic mechanisms through which H
impedes the the diffusion of vacancy clusters. These are important first steps towards modelling
more the complex H-defect interactions a required to gain a full understanding of hydrogen
embrittlement.

The remainder of this report is laid out as follows. In Section 1.1 we introduce the α–Fe-H
system and summarise the hydrogen embrittlement literature. In Chapter 2 we conduct a detailed
review into the OLKMC literature. In Chapter 3 we recap the details of the empirical potentials
underlying this work, propose an alternative confidence parameter for saddle-point search
completeness and introduce our ITLEE classification method while discussing its efficient
implementation. In Chapter 4 we detail our results simulating the diffusivity of various vacancy
clusters and discuss the mechanisms of their diffusion. Finally, in Chapter 5 we make our
conclusions, highlight our findings and propose avenues for future work.
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Fig. 1.1 Diagram of α–Fe body-centred cubic (BCC) unit cell (black dots), alongside the tetrahedral
interstices (unfilled circles); thick grey lines highlight their tetrahedral shape. The lattice parameter is
2.8557Å. Hydrogen atoms preferentially occupy the tetrahedral interstices with a dissolution energy of
approximately 0.3eV [73, 37]; marked with red arrows are the seven nearest-neighbour (nn) tetrahedral-
tetrahedral adjacencies. The corresponding nn separations are: 1.01, 1.43, 1.75, 2.02, 2.26, 2.47 and
2.67Å, respectively.

1.1 The Fe-H system

It has been known for over 100 years [38, 75] that the presence of hydrogen (H) in metals –
particularly steels/iron – can severely reduce ductility, leading to catastrophic failure below
the yield-stress. The processes that cause these effects are collectively termed hydrogen
embrittlement (HE).

Despite a century of research the core mechanisms of HE have yet to be fully understood
and are still a topic of active research/debate [4]. The difficulty in understanding HE stems
from its multi-scale nature; a full description of HE requires understanding of H-adsorption,
H-diffusion/transport, and (most crucially) hydrogen interaction/influence with/on crystal
defects. These processes span many orders of length/time scales, which presents challenges
when isolating/connecting the impact of H at the atomistic scale to the macroscopic results.

Steel is a critical engineering material with almost 1.8 millions tonnes produced annually; as
steels become stronger they become more susceptible to the effects of HE [49]. This, alongside
the potential of the future hydrogen-economy [21], reinforces the need for a comprehensive
understanding of HE in order to design better HE-resistant alloys.
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In the primary phase of mild steels, BCC α–Fe (see Fig. 1.1), hydrogen has a low solubility
but a high diffusivity [29]. Dissolved hydrogen can bind strongly to lattice defects [43] such as
vacancies (V), dislocations, grain boundaries (GB), nano-voids, interstitials, etc. This binding
reduces hydrogen mobility/diffusivity and has corresponding – but poorly understood – effects
on the defect. It is common to distinguish between freely diffusible hydrogen in the lattice
and trapped hydrogen bound to crystal defects. Theoretical frameworks, such as McNabb and
Foster’s kinetic model [55] and Oriani’s kinetic-equilibrium trapping theory [64], attempt to
abstract the atomic interactions. These go some way to understanding the impact of traps on H
diffusivity (when appropriate physical parameters are available) however, fail to elucidate the
causes of hydrogen embrittlement. Furthermore, quantum effects due to the low mass of the
hydrogen nucleus may also play a significant role in H-transport/trapping [66], particularly for
temperatures significantly below room temperature. This poses serious difficulties for purely
classical theories.

1.1.1 Embrittlement mechanisms

A breadth of mechanisms for HE have been proposed, most of them revolve around the
interactions between hydrogen and crystal defects. We shall briefly discuss a selection of the
more prominent/successful ideas, for a more complete description see Dear and Skinner [18]
and Barrera et al. [4]. Many of these mechanisms are supported by bodies of experimental
work. As few are orthogonal to each other, it is likely that a full description of HE contains a
combination of two/three of these mechanisms (alongside some yet undiscovered).

Hydrogen-induced decohesion (HID) is one of the oldest explanations of HE; Pfeil [68]
suggests that the presence of hydrogen in the lattice weakens the Fe-Fe bonding and reduces
the strain at which decohesion occurs. Reports that H segregates to crack-tips [22] (due to the
surrounding stress/strain fields) offers some support towards HID. The theory has been used
to explain increases in crack-tip-opening angles during of hydrogen loaded samples [86, 30]
however, direct experimental evidence for this decohesion has not been provided.

Adsorption-induced decohesion (AIDE) likens HE to stress corrosion cracking and is
motivated by experimental observations of crack growth in H-environments at crack-velocities
faster than H-diffusion. Lynch [51] suggest the adsorption of H at the crack tip facilitates
dislocation nucleation/emission. These dislocations assist the crack growth, which occurs
through the linkage of microvoids ahead of the crack, this is sometimes referred to as hydrogen
assisted cracking (HAC).
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Hydrogen-enhanced localised plasticity (HELP) postulates that – possibly through the
formation of Cottrell-like atmospheres [3] – hydrogen increases the mobility of dislocations
causing increased plasticity [9], microvoid coalescence and ductile fracture. This plasticity is
localised to regions containing high hydrogen concentrations. Unlike in AIDE, HELP predicts
dissolved hydrogen ahead of the crack tip enhances dislocation mobility. Evidence for this
increased mobility has been presented in FCC metals [24, 50, 76] but is limited in BCC metals.
The H-enhanced mobility of dislocations could be due to core-effects or elastic screening.

Hydrogen-enhanced strain-induced vacancy (HESIV) formation originally proposed by
Nagumo [59], explains HE as a consequence of hydrogen triggering a superabundance of
vacancies [54, 61], which coalesce to form nanovoids/microvoids and offer a low-energy
pathway for crack propagation. Vacancies clearly play a role in HE however, the scope of their
effects and the interactions between V-H complexes and other defects is not completely clear.



Chapter 2

Literature review

In this chapter we establish the role of atomistic modelling in understanding hydrogen embrit-
tlement before exploring in detail the background and cutting-edge of OLKMC modelling. In
particular, we focus on the improvements to saddle-point searching that have been developed
over the past two decades and break-down the methods used to recycle them between equivalent
local-environments.

2.1 Atomistic modelling

The need for theoretical/computational modelling in the study of the Fe-H system stems from
the inherent difficulty in experimental observations of atomic hydrogen [44]. The low solubility
and high diffusivity [29] of H in BCC iron, combined with the small ‘nucleus’ and low electron
density make direct experimental observations using electron-microscopy extremely challenging.
Instead, techniques such as thermal desorption analysis (TDA) [71], electro-permeation (EP)
experiments [70] and and atom probe tomography (APT) [82] are employed. Many of these
methods (with the notable exception of APT) are unable to directly investigate HE on the atomic
scale thus, we must fall back to computation/theory to unravel the atomic mechanisms that
cause HE.

Many different modelling techniques have been used to investigate HE over varied assump-
tions and time/length scales. On the smallest length scales density functional theory (DFT) is
used to study hydrogen preferred binding sites [17, 33, 62] and occasionally combined with
molecular dynamic (MD) in ab initio MD to study H diffusion at the highest accuracy [78].
Additionally, work has been done using path-integral MD [45, 42] to explore H diffusion in
iron while incorporating quantum effects.
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While quantum effects are known to be important in the Fe-H system at lower tempera-
tures [45], much success has been had modelling much larger systems using classical approaches.
The most popular of these is MD and its accelerated-variants using semi-empirical potentials
(reviewed in Section 3.1). This has enabled the study of H-defect kinetics, such as with
grain-boundaries [88, 84] and dislocations [81, 83].

2.1.1 Monte-Carlo methods

Molecular dynamics (MD) simulations must resolve atomic vibrations in order to accurately
track the dynamics of atom-scale systems. This imposes a significant computational effort
as the integration time-step must be of-the-order of these vibrations. Hence, even using
today’s computers, MD simulation timescales rarely exceed O (100µs). For systems with
kinetics dominated by rare events, much computational time is wasted (especially at low
temperatures) while the system explores potential-energy (PE) basins. Monte-Carlo (MC)
methods overcome this barrier by ignoring the explicit phase-space trajectory and instead
focusing on the basin→basin transitions. This can significantly accelerate simulations.

The first MC method was the Metropolis–Hastings (MH) algorithm [32], employed in
studying magnetic crystal domains. In the MC framework basins of the PES are represented
as states in a Markov chain, linked together by the mechanisms between them and their
corresponding (time-independent) transition probabilities:

Pi j : probability of transition i → j (2.1)

In MH MC the energy change between states is used to compute the transition-probability
according to the Boltzmann distribution at equilibrium. This constrains MC to measuring only
equilibrium properties of the system. To overcome this limitation the (traditional) Kinetic
Monte Carlo (KMC) framework uses instead the rate constants:

Γi j : probability per unit time of transition i → j (2.2)

to describe the transition probabilities. This enables KMC to probe non-equilibrium phenomena,
using the rejection-free n-fold way algorithm [12]; with the system in state i, the next state k is
selected as the solution to:

k−1∑
j=1
Γi j < ρ1

n∑
j=1
Γi j ≤

k∑
j=1
Γi j (2.3)
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where ρ1 ∈ (0,1] is a uniform random number and j, k ∈ {1,2, . . . ,n}. The rate constants model
a Poisson process and therefore the time elapsed during a single MC step is [11]:

∆t =
− ln (ρ2)∑n

j=1 Γi j
(2.4)

where ρ2 ∈ (0,1] is a second uniform random number. Both equations require knowledge of
the complete set of non-zero rate constants connected to a given state. In KMC these rate
constants are typically pre-computed and the mechanisms known a priori. Furthermore, in
order to make building a rate-catalogue (a list of all non-zero rate mechanisms exiting a given
state) tractable, most KMC models require embedding the system onto a lattice. This further
specialises the method and makes it particularly difficult to apply to partially-ordered/disordered
systems. Nevertheless, KMC has been used successful in studies of HE [11, 23], notably the
time-scales reached are often in the-order-of seconds.

2.1.2 Off-lattice kinetic Monte-Carlo

Kinetic MC methods, which build/adapt their rate catalogues on-the-fly, seek to overcome the
limitations of traditional KMC and go by a variety of names including: “adaptive”, “off-lattice”,

“on-the-fly”, “self-learning” and “self-evolving”. These methods are partitioned into two major
categories: those that modify the rate-constants of the mechanisms based on the atomistic local
environment (LE) [72] and those that dynamically discover mechanisms and calculate their rate
constants by searching the local potential-energy surface (PES). The latter are a substantially
more powerful set of methods, they can be used to investigate systems when the mechanisms
are too complex to predict a priori. We shall use the term off-lattice kinetic Monte-Carlo
(OLKMC) to refer exclusively to these mechanisms-constructing methods.

The OLKMC method was originally described by Henkelman and Jónsson [35]. A set
of atoms is represented in continuous space and a potential-energy function is supplied that
encodes the interaction between atoms:

U : R3n → R (2.5)

the negative gradient of the PE is the corresponding force-field. Henkelman and Jónsson obtain
the set of accessible mechanisms by exploring the potential energy surface (PES) using the
dimer method [34]. The dimer method finds saddle-points connected to some initial basin
without requiring a second target-basin (unlike the nudged elastic band method [39] which
requires both) and does not require calculation or inversion of the complete Hessian matrix



2.1 Atomistic modelling 8

(unlike classical minimum-mode following methods [13]). The dimer method is reviewed in
detail in Section 2.1.3.

After finding all the saddle-points surrounding some initial basin, small displacements
along the minimum-mode at each saddle-point and subsequent energy minimisations are made.
Hence, mechanisms – pathways linking the initial-basin→SP→final-basin – are found on-the-fly.
By applying the harmonic transition state theory (HTST) approximation, the rate constant
connecting basins i → j via the single, first-order, saddle-point ‡ is described by the Arrhenius
equation [87]:

ΓTST
i j = ν̃i je−β(E‡−E i) (2.6)

where β = 1
kBT , ν̃i j is the attempt frequency or Arrhenius prefactor and E‡, E i are the energies

(computed using the force-field) of the system at the saddle point and state i, respectively. It is
common to set ν̃i j = v a constant [56, 85]. The HTST approximation holds well for metals away
from their melting point as the atoms are rigidly held in place and the basins well approximated
by a quadratic expansion [87].

After the mechanisms have been discovered and their rate constants computed the simulation
precedes as standard KMC; a mechanism is selected according to Eq. (2.3) and time advanced
as prescribed by Eq. (2.4). At this stage no effort is made to deal with the flickering-problem
(the simulation getting stuck inside a group of states linked by low-energy-barrier/fast-rates) and
– although Henkelman and Jónsson [35] note that mechanisms are typically local – no attempt is
made to recycle the work that is done by saddle-point searches done on similar environments.

Augmentations

At its core OLKMC is a combination of two simple processes: saddle-point searching and
KMC. However, the design-space for optimisation is broad. One such optimisation is the
introduction of active volumes (AVs) by Xu, Osetsky, and Stoller [93] in their self-evolving
atomistic KMC (SEAKMC). These are defect-containing regions of the simulation, as defined
by high per-atom potential-energy, in which the SP searches and minimisations are carried out.
Active volume boundaries are automatically updated to account for long-range interactions.
The method massively reduces the computational complexity for large, defect-sparse systems by
reducing the number of atoms included in the force-field evaluation. However, this acceleration
could be gained by using local force-fields and pruning high-barrier events from the event list.
This would allow for finer control of which events are excluded and remove the difficulty of
needing to define appropriate boundaries for the AVs (likely problem dependant).
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Later work by Béland et al. [7] compare SEAKMC [93, 92] to OLKMC methods using both
dimer and ART-nouveau [6] SPS methods. They establish the dimer method is marginally faster
(requires fewer force calls) and importantly captures a broader distribution of saddle-points. All
the methods rely on HTST but, make very different assumptions about the locality of events.
Convergence of dynamic behaviour between the methods is reassuring and gives confidence that
on-the-fly KMC methods produce physical results. The authors make an interesting suggestion
to initialise SP searches with MD coordinates.

Rejection based MC sampling, as used in the original Metropolis–Hastings (MH) algo-
rithm [32] is suggested by Ruzayqat and Schulze [77] as an alternative to N-fold way algorithm
for OLKMC. They first partition the mechanisms into N sets, each set corresponding to an atom;
then calculate a rate-sum upper-bound for each set using a nearest-neighbour approximation;
select a set using the N-fold way algorithm; launch saddle-point searches to find the mechanisms
in the chosen set; finally possibly reject or accept one of these mechanisms. This method has
the advantage of constraining SP searches to a local region but, requires an estimate of the
upper-bound rate that must be fitted (as function of number of 1st, 2nd. . . nearest neighbours)
for each problem. This, alongside the additional error that comes with making an estimation,
make rejection sampling a less promising avenue for optimisation than exploring the locality of
mechanisms.

2.1.3 Saddle-point finding and the dimer method

One of the key aspects of OLKMC is the efficiency of the saddle-point search (SPS) procedure.
Minimum-mode following methods, originally described by Cerjan and Miller [13], find
saddle-points of the PES by climbing from a local minima to an adjacent SP. This is achieved
by inverting the component of the force parallel to the minimum eigen-mode, N̂ , of the PES:

Feff = −∇U0 + 2N̂∇UT
0 N̂ (2.7)

Subsequently, translating along this force maximises the energy along the minimum-mode
and minimises the energy along all other modes. Hence, converging to a local SP [41].
Unfortunately, explicit calculation of the minimum-mode from the full Hessian matrix requires
compute-intensive matrix operation that scale as O(n3). Additionally, just evaluating the
Hessian requires second derivatives of the PE, which may not always be available/tractable.

A common approach for finding saddle-points linking adjacent basins is the nudged elastic
band (NEB) [39] method. Unfortunately, this requires prior-knowledge of the final-state which
is not available in OLKMC.
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Saddle point
Dimer path
Images
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Fig. 2.1 Diagram of a dimer converging to a SP in a model two-dimensional LEPS potential coupled
to an harmonic oscillator [39]. The dimer is rotated between each step to minimise its rotational PE,
aligning its axis (line between images) with the minimum-mode. The displacement between image-pairs
for each dimer has been exaggerated for clarity. The force and the effective translational force (Eq. (2.7))
on the dimer are marked for each step.

Alternatively, Henkelman and Jónsson’s [34] dimer method, can efficiently compute the
minimum-mode of the Hessian by avoiding simultaneous computation of other eigen-modes.
This is achieved through a construction called the dimer, formed from a pair of images of the
system displaced by a small amount. Successive rotations, minimising the total PE, orient the
dimer with lowest curvature mode. During rotation, they approximate the curvature along the
dimer-axis, this only requires first-derivatives of the PE and avoids matrix operations. Figure 2.1
summarises how the dimer converges to a SP. By varying the initial orientation of the dimer
and making small random perturbations to the initial state, different saddle points can be found.

In our implementation, developed in previous work [90], we predominantly follow the
formulation of the dimer method presented by Kästner and Sherwood [41], which contains
several optimisations over the original method – notably this includes Heyden, Bell, and
Keil’s [36] improvements:

• Working with the potential gradients at the centre and one end of the dimer (as opposed
to each end), such that the central gradient can be reused during rotations. This halves
the number of force calculations during dimer translations and reduces the number of
force calculations during rotation from six to four.
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• A Fourier series expansion of the curvature during rotation and approximation of its second
derivative, enabling an improved guess for the dimer rotation angle. This accelerates
convergence to the minimum-mode.

• Exploiting the planarity of the rotated dimer to extrapolate one of the gradients at the
dimer end, thus saving a force call per rotation.

• Introduction of the limited-memory formulation of the Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS) optimiser [48, 63] to determine the plane of rotation. This is
demonstrated to converge faster than original conjugate gradient (CG) method.

• Introduction of L-BFGS optimiser during the dimer translation step to predict both the
step-size and direction. This elides the force calculations during the line search and,
being a quasi-Newton method, can lead to superlinear convergence once sufficiency close
to the SP [63, 41].

Kästner and Sherwood [41] do not fully describe the coupling of their dimer method to the
L-BFGS optimiser however, their results clearly demonstrate improvement. This is confirmed
by Zeng, Xiao, and Henkelman [95] who unified several minimum-mode following algorithms
under one mathematical framework. They prove all investigated methods are bounded in
efficiency by the Lanczos method [47]. In numerical tests the L-BFGS dimer method was
shown to converge almost as fast as the Lanczos method but require fewer force evaluations.
This was the basis for our choice to use the dimer method.

In our implementation developed in previous work [90], we diverge slightly from the
formulation of Kästner and Sherwood [41] during the dimer translation step. We still use
the L-BFGS algorithm for determining the translation direction and step size but, introduce
a trust-radius based approach to limit the step-size. The maximum step size, strust, is scaled
according to the success of the previous steps; the projection of the effective gradient on the
search direction is calculated after a step:

P = −FT
effp (2.8)

where p is the approximate Newton step, computed using the L-BFGS method. An ideal step
length would have P = 0. Hence, we increase strust when P < −Ptol and decrease strust when
P > Ptol. Additionally, we bound strust such that smin < strust < smax.
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2.1.4 Completeness of the rate catalogue

A key assumption (and point of criticism) in OLKMC is the confidence in the completeness of
the rate catalogue. This is a fundamentally-hard problem as we are attempting to estimate the
support size of an arbitrary and unknown distribution from a finite and probably small sample.
It is clearly impossible to estimate the support size without some underlying assumptions about
the shape of the distribution. Very general assumptions have been explored from a mathematical
perspective [65, 91] however, we shall focus on the literature relevant to OLKMC where the
assumptions can be stronger.

Most implementations of OLKMC follow Henkelman and Jónsson [34] and launch a
fixed number of SPS per basin – usually with some initial validation runs to establish what
a large enough number of searches is. This has two clear flaws: some states encountered
later in the simulation may have many mechanisms and thus, require many more SPS; it
provides no quantification of the certainty with which we have found all relevant saddle-points.
Correspondingly, as the sum of the rate-constants is used in Eq. (2.4), there should be an error
on the elapsed time (this idea is explored fully by Wang [89] in their reliable KMC (R-KMC)
method). Additionally, if some fast mechanisms are missed, the simulated kinetics could
become unphysical.

The first steps toward quantifying the error in the rate catalogue was Xu and Henkelman’s
[94] introduction of a confidence parameter to asses the probability a certain fraction of the
saddle-points surrounding a basin have been found:

C =
1
αNr

(2.9)

with Nr the number of consecutive repeated saddle-points discovered and the minimum
probability of finding a SP: Pmin =

α
Np

. They derive there confidence parameter through analysis
of the uniform-probability case (which has long been known to be false [35, 2]) but, incorporate
non-uniform probabilities through the α parameter. This only shifts the burden to estimating
α. Moreover, their confidence parameter makes no use of most of the information extractable
from the sample (e.g. estimation of the relative probabilities of the sample saddle-points).
Finally, their confidence-parameter only provides a confidence in having found a fraction of
the saddle-points; as previously noted, missing any could be crucial. It would be interesting
to apply their ideas but, use the fraction of total basin-escape rate instead of the number of
saddle-points found, this could gives a direct error in the rate-sum.

Chill and Henkelman [15] explore using high temperature MD (with periodic minimisations)
as an alternative to SP searches. They develop an error estimator for the completeness of
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rate catalogue using the discovery-time – the total MD simulated time. This gives the most
quantitative estimates thus far as, the probability of MD finding a transition is proportional to
its transition rate. Unfortunately 4-6 times more force-field evaluations per SP are required
compared to the dimer method. This is still a very promising avenue as, the potential for biasing
the MD simulation away from previously discovered saddle-points could reduce the number of
repeated SP discoveries.

Chatterjee [14] conducts a more rigorous analysis, building KMC networks from MD data.
They focus on formulating a validity time for the KMC network (how long a KMC simulation
running in derived network could be simulated before significant leakage to unknown and
unexplored states). They are able to estimate the total rate to unknown states, see Bhute and
Chatterjee [8] for more detail. Their framework is a two stage model, MD followed by KMC. In
OLKMC+MD-SPS would iterate between the two hence, their model would need to be adapted
but, could provide an improved error-analysis over Chill and Henkelman’s [15]

An alternative approach is taken by Alexander and Schuh [2] to quantify the completeness of
their OLKMC rate catalogue. They use a deterministic search-method choosing starting-points
uniformly spaced on concentric shells/3-spheres (perturbing a single atom) instead of randomly
perturbing the initial basin. It is hoped that deterministic-searches result in a better sampling of
the adjacent saddle-points. Unfortunately, they demonstrate only a weak relationship between
perturbation direction and resulting SP. Furthermore, perturbing a single atom could result in
biased searches. Finally, they advocate quantifying the error in the basin residence-time as a
system dependant parameter, this is not easily generalisable.

To overcome some of the difficulties we have discussed; we develop a confidence parameter
inspired by Xu and Henkelman [94] in Section 3.3.

2.1.5 Saddle-point recycling

The most computationally expensive element of OLKMC is the SPS procedure; each SPS
requires many hundreds of calls to the force-field and many SPS must be carried out to ensure
the completeness of the KMC catalogue. Due to the local nature of mechanisms, it was soon
realised that most of these SPS are unnecessary. For example, in a section of perfect lattice the
local environment (LE) around each atom is identical hence, the mechanisms that can occur at
each atom are identical. Secondly, consider two atoms sufficiently far apart; a local mechanism
centred on one will likely not change the LE around the second hence, its accessible mechanisms
remain the same. Finally, many atoms are in LE’s differing only by an Euclidean transformation
(of the form x 7→ Rx + c, with R an orthogonal matrix) hence, their mechanisms are related by



2.1 Atomistic modelling 14

the same transformation. Multiple methods have been developed to reduce the cost of building
the KMC catalogue by exploiting this locality.

System-wide methods

The simplest form of SP recycling, described by Xu and Henkelman [94], accelerates SPS
in a new state by attempting to combine the saddle-points from the previous state with the
current state. Letting the system of n atoms be represented by the vector R ∈ R3n, then the
vectors Rinit, Rsp

i and Rfinal
i are the initial, saddle and final states of the system after undergoing

the ith mechanism. An initial guess for position of the k th atom, in the ith saddle-point, after
undergoing the j th mechanism is:

R
sp, recycle
i,k =


R

sp
i,k

Rfinal
j,k − Rinit

j,k

 < dr

Rfinal
i,k otherwise

(2.10)

where dr is a small tolerance controlling how far an atom has to move during a mechanism for
it to be considered significant. These guesses are then (quickly) refined using a few iterations of
a saddle-point search procedure to converge to the true saddle-points of the new state.

This accelerates the building of the rate catalogue for a given MC step by extrapolating
the rate catalogue of the previous MC step. However, it does not allow for the propagation of
mechanisms from many MC steps previous and – as it acts on the entire system, R – does not
exploit any translational or rotational symmetries of the internal LE’s. Furthermore, it still
requires calling the SPS procedure for every possible mechanisms in the catalogue at each step.

Local methods

More advanced methods seek to classify the LE around each atom in the system. It is then
possible to associate mechanisms entirely within a LE. They can then be cached and if an
equivalent LE is discovered, instead of launching new SPS, the mechanisms can be reconstructed
from the cached information. Two key challenges arise with these methods, classifying the LE’s
into discrete categories and transforming mechanisms between equivalent LE’s.

Classifying LE’s is a form of pattern recognition; Shah et al. [80] develop a 2D scheme
for adatom diffusion on the FCC (111) surface for use alongside an adaptive KMC algorithm.
Unfortunately, due to the presence of the (111) surface being used as a reference frame, the
resulting LE categorisation method is not suitable for general OLKMC. They use symmetry
transformations to reduce the size of the catalogue by searching for a finite number of
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symmetrically transformed LE’s. This highlights the need for a classification scheme that is
invariant under Euclidean transformations. This is because in OLKMC there are an infinite
number of possible rotations/reflections; they could not all be systematically stored in the
catalogue.

Nandipati et al. [60] extend the 2D scheme [80] to 3D and generalised it to function without
a reference frame. They explicitly wished to avoid the errors associated with the precision of
the atomic positions in off-lattice methods. They associated mechanisms with the LE of the
most displaced atom. Electing to use a local Cartesian grid, fine enough such that each cell
has binary occupation. Unwrapping this grid, a single binary number can then encode the
complete LE. This method does not exploit the symmetry of the LE, instead the authors store
in the catalogue several additional symmetry-transformed versions of the LE. This requires
more memory overhead and overlays a lattice frame of reference. Finally, they do nothing to
account for small errors in the atoms positions near cell boundaries, this means some local
environments may have multiple keys associated with them, a source of inefficiency.

Moving toward an Euclidean transformation invariant classification, Konwar, Bhute, and
Chatterjee [46] present a system that stores the LE of an atom at ri as

{
ri j

�� ri j < renv
}
. LE’s

centred on atoms i and i′ are then considered equivalent when:

∀ j ∃ j′ such that
ri j − ri′ j ′

 < δr (2.11)

This method gracefully allows for some error on the positions of atoms in a LE. Equivalence
can be tested for after using their atom-by-atom matching procedure; this is computationally
expensive hence, they first prune the search-space by using some discrete heuristics (species of
central atom, number of atoms, discretised RDF). Although their definition of LE equivalence
is invariant under Euclidean transformations their atom-by-atom matching does not take into
account rotations/reflections. Therefore, many symmetry-related LE’s are still classified as
unique/inequivalent. Additionaly, (transformation invariant) information is available in the full
set of atomic separations inside each LE that is currently unexploited.

Topological methods

Topological methods are a form of local SP recycling introduced by El-Mellouhi, Mousseau, and
Lewis [56] that fully exploit the symmetry of LE’s, enabling mechanisms to be reconstructed from
LE’s related by arbitrary euclidean transformations. The generalised topological classification
process is summarised graphically in Fig. 2.2. In brief, atoms in the LE are used to draw a
graph; atoms become nodes and atoms considered bonded (ri j < redge) are connected with an
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(a)

renv

(b)

redge

(c)

⇒ nauty

(d)

Fig. 2.2 Summary of the (simplified) topological mechanism caching process. Fig. 2.2a the
minima→minima displacement vectors of a (hypothetical) mechanism are marked; an H atom (blue
dots) bound to a vacancy in the α-Fe lattice (black dots) migrates to an adjacent site. Fig. 2.2b highlights
(in red) the atoms within renv of the maximally-displaced/central atom. Fig. 2.2c shows the set of atoms
which constitute the LE in isolation alongside redge the maximum edge length. Finally, Fig. 2.2d is the
(coloured) graph, built from the LE, that is passed to nauty [53] which produces the topological key,
canonical form and reconstruction transformations then stored in the catalogue.

edge. The question of whether LE’s are equivalent is then a question of whether their graph
representations are isomorphic. This is, in general, a problem in its own complexity class
GI ∈ NP which is not known to be in either P or NP-complete [27]. Fortunately, there exists
implementations such as McKay and Piperno’s nauty1 software which can solve this problem
in polynomial time for many graphs.

Using nauty a LE can be transformed into a canonical ordering and a discrete topological-
key generated, from the canonical adjacency matrix, G, of corresponding graph. This key can
then be used in an associative key-value container/catalogue to store mechanisms in a canonical
form that can be reconstructed onto equivalent LE’s.

We adopted this methodology in previous work [90] however, topological classification
relies on a one-to-one correspondence between topology and geometry. Initially we found this
correspondence to break-down in the Fe-H system due to the small size of the H-atom and
small displacements during mechanisms. We overcame these problems: firstly extending the
definition of the adjacency matrix:

Gi j =


1 ri j ≤ redge

i

0 otherwise
(2.12)

i.e allowing redge to vary for each atom, to ensure atoms near the surface of the LE are fully
specified. Secondly, colouring each atom as the pair formed from the atoms’ atomic number

1https://pallini.di.uniroma1.it/

https://pallini.di.uniroma1.it/
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and the local sum: ⌊
c
∑

j

Gjiri j

⌋
(2.13)

with c a problem-dependant scaling constant. This encodes much more of the information
contained within

{
ri j

}
into the (di)graph.

These extensions allowed us to restore the one-to-one correspondence between topology
and geometry. Unfortunately, before (by choosing redge between the first and second nearest
neighbour distances in α-Fe) the classification was less sensitive (but not completely tolerant)
of small errors in the atomic positions. With the above modifications however, infinitesimal
perturbations in position can result in many keys being associated with the same geometry.
This, alongside the more fundamental problem of having no explicit/quantitative link between
topological keys and the similarity of LE’s, pushed us to move away from a topological
classification scheme. Section 3.2 details our alternative solution to the problem.

2.1.6 Superbasins and the low-barrier problem

As previously eluded to in Section 2.1.2 a common issue encountered during OLKMC
simulations is the flickering/low-barrier problem [56, 85]. This occurs when a collection of
basins – often called a superbasin – are connected by a series of fast mechanisms. It requires
many MC steps to escape from a superbasin. As the rate-sum,

∑n
j=1 Γi j in Eq. (2.4), is very

large during this period, the simulated time advances very slowly.
Two exact solutions to this problem are presented by Fichthorn and Lin [25]; the key insight

is the partitioning of states into transient and absorbing sets, followed by analytically solving
the motion inside the transient states. They use the average simulation time-step as a criterion
for detecting when a superbasin is encountered: ⟨∆t⟩n < ∆tmin. Other analytical solutions have
been proposed [69, 6] that compute the mean superbasin-escape time.

Contrastingly, simpler TABU-like [31] methods that ban recent-transitions have been
employed [56, 16]. These have been shown to be thermodynamically sound providing the total
number of KMC steps is much greater than the oldest banned transition.

Ramasubramaniam et al. [72] take a further simplified approach to superbasins; combining
states connected by fast mechanisms into a single state and ignoring all internal superbasin
kinetics. Although this is clearly not exact they have some success measuring bulk diffusion
coefficients.
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In previous work [90] we attempted to use a TABU method however, during testing we
discovered this method produced large biases in the results. Therefore, we extended Puchala,
Falk, and Garikipati’s [69] mean rate method (MRM) by further partition the mechanisms into
transient and absorbing categories. This allowed us to apply the MRM cleanly to OLKMC
without having to fully explore all the states in a superbasin.

2.2 Summary

In summary, OLKMC is an unbiased tool being successfully applied to study the kinetics
of various metal-systems. A multitude of avenues for optimisations (massively-parallel
implementations, improved SP recycling, swarm based SPS methods, etc) are still unexplored,
many of which could allow for simulations that further our current understanding of HE.
Although, the accuracy of the underlying potentials will always be a limiting factor, they are an
ever improving field. Off-lattice KMC allows for the exploration of previously inaccessible
time-scales at atomic fidelity. As such, it is the perfect tool to explore the uncertain and complex
mechanisms controlling HE.



Chapter 3

Theory

This chapter is devoted to the theory supporting our OLKMC implementation. In Section 3.1,
we summarise the semi-empirical potentials employed in this work and present analytical
expressions for their first and second derivatives. Section 3.2 details the invariant and tolerant
local-environment classification scheme we have developed to replace topological methods
during saddle-point recycling. Finally, in Section 3.3 we detail an alternative confidence
parameter used as a stopping criterion for the SPS procedure.

3.1 Embedded atom method potentials

The limiting level of theory in OLKMC is the underlying potential. Unfortunately, during SPS
many calls to the force-field are required thus, the potential also becomes the performance-
limiting factor. Hence, ab initio approaches are out of reach if we want to reach HE timescales –
of-the-order-of seconds.

The embedded atom method (EAM) – originally developed by Finnis and Sinclair [26] – is
a fast, well tested, semi-empirical model of the potential energy of a collection of atoms. EAM
potentials are sufficiently short range to enable fast MD simulations. Although they are not
without criticism [58], EAM potentials have become well established in the literature.

We use the slight variation presented and fitted by Ramasubramaniam, Itakura, and
Carter [73]. They generalise the EAM embedding function and fit to first-principles (DFT)
measurements and experimental data. They fit to wide variety of targets (perfect crystal, point
defect, surface measurements, etc) and their potential provides good reproduction of several
crystal defect structures, including the sixfold symmetry of screw dislocation cores. We also
include the modifications by Song and Curtin [81] who, introduce additional H-H repulsion to
reduce the hydrogen clustering observed in the original potentials.
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Adopting the notation of Greek superscripts for atom indexes (and later Roman subscripts
for vector components) the EAM potential form is:

U =
1
2

∑
α,β
α,β

Vαβ +
∑
β

F β (3.1)

with Vαβ a symmetric pair-potential function (such that Vαβ = V βα) acting on rαβ =
rαβ =r β − rα

 the atomic separations. Additionally, F β is the embedding function acting on ρβ, the
electron density of the βth atom:

ρβ =
∑
α,β

φαβ (3.2)

where φαβ describes the electron density of the αth atom acting at the βth atom. Strictly
speaking, the embedding and potential functions are empirically chosen and do not represent
physical electron densities [26]. Finally, the functional forms of V and φ are chosen such that:

V
(
rαβ

)
= φ

(
rαβ

)
= 0 when rαβ > rcut (3.3)

Hence, the potentials are described as local and the atoms within a particular cut-off radius are
described as the central atoms’ neighbours.

Due to the complexity of the analytic forms of the fitted functions and the high cost of
evaluating them, we pre-compute and tabulate the 9 EAM functions. During the simulation we
pre-compute and store the natural cubic spline coefficients [1] from the tabulated values, then
reconstruct the smooth functions and their differentials appropriately.

3.1.1 First derivatives

The gradient of the potential is required for saddle-point finding methods; noting (see Ap-
pendix A.1 for a derivation):

∂rαβ

∂rγj
=

(
δγβ − δγα

)
r̂αβj (3.4)
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the first derivative of the potential takes the form:

∂U
∂rγj
=

1
2

∑
α,β
α,β

ÛVαβ
(
δγβ − δγα

)
r̂αβj +

∑
β

ÛF β
∑
α,β

Ûφαβ
(
δγβ − δγα

)
r̂αβj

=
∑
α,γ

ÛVαγr̂αγj +
∑
α,β
α,β

ÛF β Ûφαβ
(
δγβ − δγα

)
r̂αβj

=
∑
α,γ

( ÛVαγ + ÛFγ Ûφαγ + ÛFα Ûφγα) r̂αγj (3.5)

where we use an over-dot to denote differentiation and have applied the antisymmetry of rαβ.
The sum runs-over the neighbours of gamma. The gradient can be efficiently computed

using two loops over all atoms, see Algorithm 3.1 for pseudocode.

Algorithm 3.1 Two-loop EAM gradient.

procedure grad
for each atom, γ do ◃ Loop 1.

Compute and store ργ by summing over neighbours of γ ◃ Equation (3.2).

for each atom, γ do ◃ Loop 2.
Compute ∂U

∂rγj
by summing over neighbours of γ ◃ Equation (3.5).

3.1.2 Second derivatives and Vineyard theory

Although most OLKMC implementations make the constant pre-factor approximation in
Eq. (2.6) it is possible to explicitly calculate ν̃i j using HTST by assuming the PES is quadratic
near the saddle point:

ν̃i j =

∏N
k=1 ν

i
k∏N−1

k=1 ν
‡
k

(3.6)

where ν‡k , νi
k are the real normal-mode frequencies at the saddle point and state i respectively.

However, Chill and Henkelman [15] identify large variations in the harmonic pre-factor during
Al adatom diffusion events (5.8 × 1012 to 2.0 × 1014s−1 for top three events). This is evidence
to start calculating ν̃i j , rather than relying on constant approximation.
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In order to do this we shall require the explicit Hessian of the potential energy; differentiating
Eq. (3.5) we obtain:

∂2U
∂rηi ∂r

γ
j

=
∑
α,γ

r̂αγj
∂

∂rηi

( ÛVαγ + ÛFγ Ûφαγ + ÛFα Ûφγα)
+

∑
α,γ

( ÛVαγ + ÛFγ Ûφαγ + ÛFα Ûφγα) ∂r̂αγj

∂rηi
(3.7)

which after careful manipulation (see Appendix A.2) resolves to:

∂2U
∂rγi ∂r

γ
j

= ÜFγµγi µ
γ
j +

∑
α,γ

[
Aαγδi j +

(
Aαγ − Bαγ − ÜFα Ûφγα Ûφγα) r̂αγi r̂γαj

]
(3.8)

∂2U
∂rηi ∂r

γ
j

�����
η,γ

= (Bηγ − Aηγ) r̂ηγi r̂γηj − Aηγδi j + ÜFη Ûφγηµηi r̂ηγj − ÜFγ Ûφηγr̂
ηγ
i µ

γ
j −Oηγi j (3.9)

where we have introduced the electron-density dipole:

µ
β
i =

∑
α,β

Ûφαβr̂αβi (3.10)

symmetric tensors A, B such that:

Aαβ =
ÛVαβ + ÛF β Ûφαβ + ÛFα Ûφβα

rαβ
and Bαβ = ÜVαγ + ÛFγ Üφαγ + ÛFα Üφγα (3.11)

and overlap term:

Oηγi j =
∑
α,γ,η

ÜFα Ûφγα Ûφηαr̂ηαi r̂αγj (3.12)

Similarly to the gradient, this can be efficiently computed by looping twice over all the
neighbours of each atom, see Algorithm 3.2 for pseudocode.

3.2 Invariant and tolerant local-environment equivalence

The objective of our classification scheme is to design a method to efficiently store a catalogue
of LE’s, each with an associated set of mechanisms (represented by a displacement vector,
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Algorithm 3.2 Two-loop EAM Hessian.

procedure hess
for each atom, γ do ◃ Loop 1.

Compute and store ργ and µγ ◃ Equation (3.2), Equation (3.10).

for each atom, γ do ◃ Loop 2.
Build a list, n, of the neighbours of γ.
Iterating n: compute ∂2U

∂rγi ∂r
γ
j

◃ Equation (3.8).

Iterating n: compute contributions to ∂2U
∂rηi ∂r

γ
j

����
η,γ

◃ Equation (3.9).

Iterating all pairs, (α, β), in n: compute contributions to Oαβi j ◃ Equation (3.12).

minim→sp→minima, for each atom in the LE). It must be possible to efficiently match a
new LE to an equivalent LE in the catalogue and compute the required set of transformations
to map the stored mechanisms onto the new LE. Ideally the equivalence should be invariant
under infinitesimal perturbations of atomic positions and must be invariant under Euclidean
transformation and permutation of identical atoms of/in the LE.

In order to overcome the aforementioned difficulties when dealing with the small errors in
the atomic positions we move away from the graph-based representation of the atoms. Instead
we represent a LE centred on the (coloured) atom/point p0 =

{
CP

0 ∈ Z, p0 ∈ R3 }
as the

(coloured) point-set:

P = { p0, p1, . . . , pn | ∥ p0 − pi∥ < renv } (3.13)

where, without loss of generality, we set the centroid of P to the origin.

3.2.1 Tolerant equivalence

Algorithm 3.3 Checks to see if Eq. (3.14) holds for point sets P and Q.

Require: P and Q contain the same number, N = 1 + n, of points.
function are_equiv(P, Q)

O← rotor_onto(P,Q) ◃ Algorithm 3.5.
∆2 ← ∑n

k=0 ∥pk − Oqk ∥2
return ∆2 ≤ δ2
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Fig. 3.1 Figure 3.1a, a stored (reference) LE centred on atom labelled 0. Figure 3.1b, an unclassified LE,
equivalent to the reference LE but with: small perturbations to all the atomic positions, a 30° rigid-body
rotation and a permutation of the atomic labels. Figure 3.1c, the result of applying Algorithm 3.6 to the
unclassified LE. Figure 3.1d, the result of applying Algorithm 3.5 to find the optimal rotation/reflection
to map Fig. 3.1c onto the (overlaid) reference LE. We see all the atoms are close enough that the LE’s
can be considered equivalent.

Now the question of determining if two LE’s, P and Q, (of the same size) are equivalent is
the same as asking if there exists a matrix O and permutation π such that:

n∑
i=0

pi − Oqπ(i)
2 ≤ δ2 (3.14)

and:

CP
i = CQ

π(i) (3.15)

subject to the constraints:

OOT = OTO = I and π (0) = 0 (3.16)

where δ is the maximum point-error/inter-point separation, as well as the maximum ℓ2 norm or
"distance" between the point-sets. Additionally, we define ∆i =

pi − Oqπ(i)
. The equivalence

described is represented graphically in Fig. 3.1 and can be tested using Algorithm 3.3. Allowing
O to be a general orthogonal (rather than pure rotation) matrix accounts for reflections. The
permutation is required as there is no guarantee the neighbours of a point will be discovered
in any particular order. Finding the optimal π, R is a strongly constrained variation of the
well-studied point-set registration problem [97, 52].

The choice of δ controls how similar two LE’s must be before they are considered equivalent;
δ must be small enough to distinguish geometries that are local-minima of the atomic potential.
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This requires at minimum δ < rmin, with rmin the minimum interatomic separation. In the Fe-H
system this implies we require δ ≤ 1Å – corresponding to the smallest H-H separation.

An even stronger bound on δ can be established through the connection to U, the potential
energy; Taylor-expanding about a converged extrema:

∆U ≈ ∆xT
✟✟✟✯

0
∇U +

1
2
∆xTH∆x (3.17)

≈ 1
2
∆xTQΛQT∆x (3.18)

where in the second line, we have applied the eigendecomposition [10, p. 80] to the real
symmetric Hessian, forming Λ the diagonal matrix of eigenvalues and Q the orthogonal matrix
of eigenvectors. Noting an orthogonal transformation does not change the magnitude of a
vector; A (weak) upper-bound on ∆U near a basin can be constructed from Eq. (3.18):

∆U ≤ λmax
2

QT∆x
2

≤ λmax
2
∥∆x∥2

≤ λmax
2
δ2 (3.19)

where λmax is the maximum eigenvalue of H and the third line follows from Eq. (3.14). If two
LE’s are equivalent (satisfying Eq. (3.14) and Eq. (3.15) under the constraints of Eq. (3.16))
and δ is small enough such that the mechanisms are transferable, then the energy barriers of the
reconstructed mechanisms should be of-the-order-of ∆U off the true energy barriers. Ultimately,
choosing a smaller value of δ increases the accuracy of the simulation, at the expense of
increasing the number of SPS required. Hence, we should choose the largest δ ensuring ∆U is
much less than the minimum relevant energy barrier.

Typically in the Fe-H system, with renv = rcut = 6Å, N ≈ 65 and (using the perfect lattice
as an order of magnitude estimation) λmax ≈ 10eV Å−2. Therefore, we choose δ = 0.01Å
resulting in an energy tolerance of approximately ∆U ≤ 5 × 10−4eV. In practice we expect
∆U ≪ 5 × 10−4eV as Eq. (3.19) assumes ∆x is parallel to the largest eigenvector of H which is
unlikely. We see ∆U is much less than the energy barrier for H diffusion (0.0376eV), typically
the fastest mechanism in the Fe-H system, justifying our choice of δ.

The choice of δ is continually validated during a simulation. If δ is too large then, following
a mechanism reconstruction, a relaxation of the lattice will result in a large energy change.
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i ji j
∆i ∆j

qi j

pi j

Fig. 3.2 Diagram showing the orientation of two pairs of points i and j in point-sets P (dark grey) and Q
(white) that maximises ∆2

i + ∆
2
j the sum of the square inter-point separations.

If/when this is detected δ can be adjusted. Conversely, if no such energy changes are detected δ
can be increased to try and increase the performance of the simulation.

3.2.2 Point-set registration

Algorithm

To find the required permutation to determine equivalence, we recursively order Q; at each
recursion searching for a point that ensures the intra-point separations to all previously ordered
points in Q, are the same as (within tolerance of) those in P. Only requiring the intra-point
separations, ri j =

ri − rj
, in P and Q (which are invariant under Euclidean transformations of

P and Q), this method can match the order of the points in LE’s that are related by arbitrary
rotations/reflections before solving for the rotation/reflection.

A constraint between the intra-point separations, pi j and qi j , can be obtained by studying
Fig. 3.2: ��pi j − qi j

�� ≤ ∆i + ∆j (3.20)

maximising ∆i + ∆j subject to the constraint from Eq. (3.14): ∆2
i + ∆

2
j ≤ δ2, we find:��pi j − qi j

�� ≤ √2δ (3.21)

which can be used to match pairs of points in Q to P and vice-versa. Each new point must
satisfy Eq. (3.21) for all previously matched point, this can be tested for using Algorithm 3.4.

Once the order of the points in P and Q match we must solve:

min
O∈M3,3(R)

n∑
i=0
∥pi − Oqi∥2 s.t. OOT = OTO = I (3.22)
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Algorithm 3.4 Checks that Eq. (3.21) holds ∀ j < i.

Require: P[] and Q[] are of length i or greater.
function match_up_to(P[], Q[], i)

for j ← 0, . . . , (i − 1) do
if |norm(P[i],P[ j]) − norm(Q[i],Q[ j])| >

√
2δ return false

return true

this is equivalent to the orthogonal Procrustes problem [79] which can be efficiently solved
using the singular value decomposition (SVD). For completeness, the full method is included
in Algorithm 3.5.

Algorithm 3.5 Solves the orthogonal Procrustes problem [79, 96]. Returns the orthogonal
matrix which rotates/reflects Q onto P.

Require: P and Q contain the same number, N = 1 + n, of points.
function rotor_onto(P, Q)

H ← ∑n
k=0 qk p

T
k

Compute U , V from the SVD of H such that H = UΣVT

return VUT

The full order-matching and equivalence testing method is detailed in Algorithm 3.6; once
the algorithm has matched the orders and colours it checks if the permutation satisfies Eq. (3.14).
This is required as there may be degenerate permutations satisfying Eq. (3.21) ∀i, j but not
satisfying Eq. (3.14). Additionally, we pre-order points, sorting them by their distance from
the origin. This reduces the number of points that must be searched through to find the next
matching point.

Complexity analysis

A key consideration for the usefulness of Algorithm 3.6 is its time complexity; for two randomly
permuted point-sets the expected time complexity is:

O(Pi) =


N + di
(
O

(
Mti

)
+O(Pi+1)

)
+ (N − di)

(
O

(
Mfi

) )
1 ≤ i < N

N otherwise
(3.23)

where di (possibly a function of N) is the number of (degenerate) points for which match_up_to
returns true, each triggering di recursions; O

(
Mti

)
is the time complexity of match_up_to

when it returns true and O
(
Mfi

)
the corresponding time complexity when it returns false.
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Algorithm 3.6 Attempts to permute elements of Q such that Eq. (3.14) and Eq. (3.15) hold.
Returns true if P and Q are equivalent.

Require: P[] and Q[] are of length N = 1 + n.
function permute_onto(P[], Q[], i)

if i ≥ N return are_equiv(P, Q) ◃ Algorithm 3.3, recursion terminates.

for j ← i, . . . ,n do ◃ Try to find the ith matching point.
if col(P[i]) = col(Q[ j])

swap(Q[i], Q[ j])
if match_up_to(P, Q, i) and permute_onto(P, Q, i + 1) return true

swap(Q[i], Q[ j])

return false

It is important to note in 3D the distance from four non-coplanar points fully specifies a
unique point, hence:

O
(
Mti

)
= N and O

(
Mfi

)
= 1 (3.24)

By the same logic we see that di is independent of N and when i ≥ 4 a constant, d; substituting
into Eq. (3.23) and simplifying, the time complexity of Algorithm 3.6 is:

O(Pi) =


N + dO(Pi+1) 1 ≤ i < N

N otherwise
(3.25)

a geometric progression summing to:

O(P) =


N

1−d d < 1

N2 d = 1

NdN d > 1

(3.26)

We must highlight the linear complexity regime, when d < 1, would imply that permute_onto
must return false thus, in general with d ≤ 1 we conclude O(P) = N2. Values of d greater
than 1 rapidly trigger exponential complexity which makes the run-time of Algorithm 3.6
unfeasible.
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Due to the tolerance in intra-point distances and assuming an approximately uniform point
density ρ, we expect:

d =
4
3
π

(√
2δ

)3
ρ (3.27)

Therefore, in order to avoid exponential complexity, we require d ≤ 1. For the case of α-Fe
with lattice constant a and two atoms per unit cell, this requires:

δ ≤ a
(

3
16
√

2π

) 1
3

< 1Å (3.28)

which is easily satisfied by our choice of δ. Smaller values of δ still reduce the constant and
linear terms hidden in Eq. (3.26) which can be dominant for small N .

Heuristics

With the algorithms detailed thus far, a catalogue could be built that satisfied our requirements for
LE classification however, although we ensure the condition of Eq. (3.28), a call to Algorithm 3.6
still takes ≈ 10µs with a LE containing 65 atoms. Hence, as we may call Algorithm 3.6 for
every LE in the catalogue when encountering a new LE, this becomes prohibitively expensive.
To reduce the search-space we partition the catalogue into sub-catalogues each indexed by a
discrete key, kd:

kd : P→ {
CP

0 , { mα } } (3.29)

where mα is the number of points in P of the αth colour. kd can be used as the key to a hash-table
(or other suitable key–value store) enabling O (1) look-up of the sub-catalogues.

The sub-catalogues may still become very large, especially in systems where all points
are the same colour. As a simulation progresses, we can sort the order of the LE’s in each
sub-catalogue by its occurrence count. This significantly decreases the look-up time for a typical
LE as many systems have most points in the same LE and only a small number of "active"
points (e.g near defects) in rare LE’s.

To further accelerate searches of the sub-catalogues we introduces a second fuzzy key, k f ,
the collection of ordered-sets/lists:

k f : P→
{
{ p0i | i > 0 }α≤ ,

{
pi j | i > 0, j > i

}α, β≤α
≤

}
(3.30)
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where pi j denotes the intra-point distances between points i and j and the superscripts α, β
indicate the colour of the points in the point pair. For example, in the α-Fe system there are
two possible point colours hence, k f contains five ordered lists. Two each containing the
intra-point distances between points of a particular colour and the central point; a further three
lists containing the intra-point distances between pairs of atoms coloured H-H, Fe-H/H-Fe, and
Fe-Fe.

By construction, k f is invariant under Euclidean transformations and permutations of the
points in P. Two fuzzy keys can be compared for equivalence using Algorithm 3.7. It is
important to note Algorithm 3.7 is a non-transitive binary relation.

Algorithm 3.7 Compare two fuzzy keys for equivalence.

Require: P and Q have matching discrete keys.
function fuzzy_equiv(kP

f , kQ
f )

for each pair of ordered lists p[], q[] in kP
f , kQ

f do
for each pair of elements p, q in p[], q[] do

if |p − q | >
√

2δ return false

return true

If we store alongside each LE in the catalogue its fuzzy key, before comparing LE’s with
Algorithm 3.6 we require their fuzzy keys to be equivalent. Specifically, it is necessary but not
sufficient for their fuzzy keys to be equivalent for Algorithm 3.6 to return true. In practice,
equivalence of fuzzy keys is a very strong pre-conditioner for Algorithm 3.6. As comparison of
fuzzy keys is orders of magnitude faster (typically taking ≈ 100ns) this substantially accelerates
searching the sub-catalogues.

Summary

The full method for classifying a LE, represented by the point-set Q, and reconstructing the
mechanisms discovered by previous SPS at an equivalent LE proceeds as follows:

1. Compute the discrete, kd , and fuzzy, k f , keys of Q.

2. Find the sub-catalogue corresponding to kd .

3. Search the sub-catalogue; for each LE denoted P:

(a) If the fuzzy keys of P and Q are equivalent.

(b) If (using Algorithm 3.6) Q can be ordered and rotated/reflected to match P.
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(c) End the search and return P, the equivalent LE.

4. If a match, P, was found, the mechanisms associated with P, can be reconstructed onto Q

by multiplying their atomic displacement-vectors by OT.

5. Otherwise, Q represents a new LE; append Q to the sub-catalogue and launch SPS centred
on the LE in order to discover any mechanisms associated with it.

Our invariant and tolerant LE equivalence (ITLEE) classification scheme satisfies the
requirements laid out in Section 3.2. Equivalence is fully invariant under: Euclidean transfor-
mations of the LE; permutations of identical atoms and most crucially small perturbations of
the atomic positions. Our classification scheme uses all the information encoded within the set
of N (N − 1) inter-atomic separations in a LE. We have provided heuristics to enable efficient
implementations of our scheme. Furthermore, we have justified our choice of δ = 0.01Å,
connecting δ to the error in the reconstructed energy barriers.

3.3 Confidence parameter for catalogue completeness

We wish to develop a confidence parameter that gives us a measure of the certainty that we have
found all relevant saddle-points surrounding some basin. The confidence parameter should give
us some idea of when we should stop searching for new saddle-points. Importantly, we want to
allow for the possibility that the probability of discovering a SP is non-uniform (it has been
demonstrated that high-energy saddle-points are less likely to be discovered).

Suppose we have been searching for saddle-points for some time and have discovered a
collection of known saddles. We choose to investigate:

P (found all saddles | m consequtive failed searchs (CFS) ) (3.31)

where, in this context, a ‘failed’ search is one that fails to discover an unknown SP (e.g. finds a
known SP). We conceptualise this like a ball-and-urn problem. There exists two possibilities
either: we have been found all the saddles or there exists some number of unknown saddles that
occupy a fraction, ϵ , of the remaining probability space. In the former case the probability of m

CFS is trivially unity, while in the latter:

P (m CFS | ϵ) = (1 − ϵ)m (3.32)
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Applying the Bayes–Price [5] theorem to Eq. (3.31) and substituting in the above:

P (found all | m CFS) = P (found all)
P (found all) + P (some remain) · (1 − ϵ)m (3.33)

Hence, accepting the zero-information prior P (found all) = P (some remain), becomes:

P (found all | m CFS) = 1
1 + (1 − ϵ)m (3.34)

We note, it is possible to estimate the relative probability of finding a known SP by keeping
a tally, fi, of the number of times SP i has been discovered by a SP search. We make the
assumption that the probability distribution of finding a SP is sufficiently-smooth such that the
maximum probability of finding an unknown SP is close to the probability of the rarest known
SP. Hence, a lower-bound on Eq. (3.34) can be constructed assuming there is only a single
unknown saddle remaining:

P (found all saddles | m CFS) '
1

1 + ©«
1

1 + fmin∑
fi

ª®¬
m (3.35)

Once the above surpasses a confidence limit, e.g. 95%, we end the search for new saddle-points.



Chapter 4

Results and discussion

4.1 Vacancy cluster diffusion

In previous work [90] we used OLKMC with topological LE identification to simulate vacancy
cluster diffusivities. Hence, to verify our ITLEE classification we initially repeat then extend
these measurements to larger and more complex clusters. Previously we used a K-Means
clustering algorithm [67] to explicitly track the position of vacancies during the simulation. This
is difficult to extend to larger clusters hence, we choose to use the mean-squared displacement
(MSD):

MSD =
1
N

N∑
α

rαt=0 − rαt
2 (4.1)

which is directly related to the simulated and effective diffusivities, Dsim and Deff respec-
tively [74]:

Dsim =
MSD

6t
and Deff =

Dsim
xd

(4.2)

with xd the defect concentration. This has the additional benefit of averaging over many more
atoms.

For our first investigation we insert vacancy-clusters of various sizes into a 62 unit-cell
supercell and track the MSD of the Fe atoms over time. The results are presented in Fig. 4.1
and summarised in Table 4.1. Most immediately in Fig. 4.1 we see a clear convergence to
Eq. (4.2) for all clusters, once long-enough timescales have been reached. This timescale is
important as it is a property of the system (not simulation method). Off-lattice KMC is capable
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Fig. 4.1 Vacancy clusters diffusing in a perfect 63 unit-cell supercell at 300K. This required approximately
100 hours of CPU-time on a quad-core Intel® Xeon® at 3.10GHz.

of reaching diffusive timescales for all the cluster investigated, with convergence requiring
between 5 × 10−4s and 5 × 105s. This is made possible by a combination of the ITLEE caching
and the periodic boundary conditions; after a series of mechanisms the clusters are moved to a
topologically equivalent state just rotated/translate. Therefore, SP searches were only required
during the initial learning phase of the simulation. This highlights the need for saddle-point
recycling in any OLKMC simulation.

The expected behaviour for cluster diffusivity is larger clusters becoming less mobile. This
trend is visible in Table 4.1 but, the the diffusivities for the V2 and V3 clusters seem to reverse
the trend. We shall now discuss each cluster’s diffusion mechanisms in order to explain the
results.

V1 cluster

The single vacancy diffuses by 1
2 ⟨111⟩ vacancy hops with an activation energy of 0.65eV and

kinetic pre-factor 8.38 × 1013Hz. This mechanism is sketched in Fig. 4.2a and Fig. 4.2b. The
energy barrier and mechanism are in good agreement with the literature [74, 57].



4.1 Vacancy cluster diffusion 35

a b

d e f

h i

k l m n o

p q r

t u v w

Fig. 4.2 Mechanisms identified for vacancy-cluster diffusion in the α–Fe lattice. Blue circles mark a
vacancy; white circles represent an occupied lattice site and arrows mark the path of the vacancy during
a mechanism. Perturbations to the lattice have been omitted for clarity. See the text for a full description.
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Table 4.1 Summary of results for various vacancy clusters diffusing in the α–Fe lattice. All diffusivities
have a fractional error less than 1 in 100. The quoted energy-barriers and corresponding harmonic
pre-factor are for the largest barrier during the sequence of mechanisms.

Cluster ∆Emax/eV v/1013Hz Simulated time/s Deff/m2 s−1

V1 0.65 8.38 27.2 3.42 × 10−17

V2 0.65 10.4 1.26 3.99 × 10−17

V3 0.48 5.22 0.0891 2.04 × 10−15

V4 0.68 3.41 8.23 9.04 × 10−18

V5 0.70 6.82 12.5 4.09 × 10−19

V6 0.73 6.87 55600 2.98 × 10−22

V2 cluster

The lowest-energy configuration for V2 is the second nearest neighbour (2nn) pair followed
by the 1nn then 4nn orientations [20]. Two mechanisms are identified for V2 diffusion. The
predominant mechanism observed was oscillations between the 2nn and 4nn states. This is
sketched in Fig. 4.2d to Fig. 4.2f, the corresponding energy barriers and kinetic pre-factors
are 0.65eV, 8.38 × 1013Hz and 0.44eV, 7.52 × 1013Hz. The 2nn pathway may be expected to
be the dominant mechanisms, as one may predict the transition to the lower energy 1nn state
to have a lower energy-barrier. However, the 2nn to 1nn transition has an energy barrier of
0.72eV and kinetic pre-factor 2.97 × 1013Hz. This increased energy-barrier makes it kinetically
less-favourable.

The V2 diffusion barrier is very close to the diffusion barrier for the single vacancy, this
may be an artefact of the EAM potential as ab initio studies typically predict an energy barrier
0.05–0.11eV [19, 28] lower. Nevertheless, this is in agreement with other works that use
semi-empirical potentials [57].

The combination of a near-identical energy barrier, slightly higher kinetic pre-factor and
additional (albeit slower) 2nn pathway result in the V2 cluster having a marginally higher
diffusivity compared to the single vacancy.

Off-lattice KMC has identified the counter-intuitive predominant diffusion mechanisms of
the V2 cluster. Although, this could have been captured with traditional KMC and careful DFT
analysis, here it arises naturally without any special modifications.
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V3 cluster

As previously hinted, the V3 cluster defies the expectation and is the most mobile cluster with a
diffusivity almost a thousand times higher than a single vacancy at 300K. This is due to the
minimum energy configuration (MEC) – Fig. 4.2h – permitting a mechanism/vacancy-hop with
an energy barrier of 0.48eV and kinetic pre-factor 5.22 × 1013Hz that immediately reforms the
MEC but displaced/rotated. Similarly to the single vacancy, V3 can diffuse without changing
its shape. The mechanism is detailed in Fig. 4.2h and Fig. 4.2i. The simulated MEC matches
theoretical predictions [28], as does the mechanism [28].

V4 cluster

At the V4 cluster the mobility of the clusters begins to decrease. This is due to the high energy
barrier, 0.68eV, required to break apart the MEC, sketched in Fig. 4.2k. Once the MEC has
disassociated a series of diffusion mechanisms are possible. One such mechanism is detailed in
Fig. 4.2k to Fig. 4.2o. The energy barriers during these mechanisms are: 0.68eV, 0.51eV, 0.51eV,
and 0.47eV; while the corresponding kinetic pre-factors are: 3.41 × 1013Hz, 5.38 × 1013Hz,
5.81 × 1013Hz and 3.46 × 1013Hz; respectively. Hence, the decreased diffusivity, compared to
the single vacancy, is predominantly due to the increased energy-barriers and additional steps
required to diffuse.

V5 and V6 clusters

Similar to the V4 clusters the V5 and V6 clusters continue to become less mobile as their size
increases. For the V5 cluster, two mechanisms are detailed in Fig. 4.2p to Fig. 4.2k and Fig. 4.2t
to Fig. 4.2w. For both mechanisms the limiting barrier to diffusion is the dissociation of the
MEC with a barrier of 0.70eV and a harmonic prefactor of 9.86 × 1013Hz.

The V6 cluster was particularly difficult to analyse due to the dynamic superbasin acceleration
that was used. During the simulation the tolerance for a mechanism to be considered transient
rose to approximately 0.6eV. This meant that many vacancy hops could occur between the
time-steps outputted during the simulation. Although the kinetics remain accurate, the state-to-
state dynamics inside the superbasin(s) are lost. This enabled the simulation to reach the very
long timescales required to observe the diffusive behaviour of the V6 cluster which would not
have otherwise been achievable.
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Table 4.2 Summary of cluster diffusivities with the addition of a single hydrogen atom during the
simulations in Fig. 4.3, Fig. 4.4, Fig. 4.5 and Fig. 4.6.

Cluster Diffusivity, D/m2 s−1

Without H With H Deff of H

V1 3.42 × 10−17 5.16 × 10−19 1.11 × 10−16

V2 3.99 × 10−17 3.27 × 10−18 2.04 × 10−16

V3 2.04 × 10−15 1.54 × 10−15 -
V4 9.04 × 10−18 7.03 × 10−18 3.94 × 10−16

4.1.1 Summary

Off-lattice KMC has successfully been applied to study the diffusion of vacancy clusters. The
mechanisms predicted and diffusivity-trends match those seen in the literature [20, 28, 57]
however, they have all been predicted a priori by the highly general OLKMC framework. The
requirement of solving the flickering problem has been emphasized by our study of the larger
cluster – particularly V5 and V6. The long timescales reached are achieved through our SP
recycling method based on our ITLEE classification, this can typically completely elide SPS
during the later stages of a cluster-diffusion simulations.

4.2 Cluster-hydrogen complex diffusion

To build upon the cluster diffusivity results and highlight OLKMC’s capability of resolving
events occurring at vastly different timescales we add a single hydrogen atom into several of the
clusters forming Vn-H complexes. The resulting diffusivities are summarised in Table 4.2. We
shall now discuss each complex in detail.

V1-H complex

Figure 4.3 details the MSD of the Fe and H during the complex diffusion alongside the H-free
data from Fig. 4.1 for reference. Three regimes are visible in Fig. 4.3. Initially, below 10−9s, the
H atom explores the 6 bound states inside the vacancy, the energy-barrier for these transitions is
0.061eV with a kinetic pre-factor of 3.12 × 1012Hz. Once the 24 internal mechanisms have
been explored the superbasin analytical acceleration kicks in and mechanisms that disassociate
the complex begin to occur. This is visible as a large time-discontinuity in Fig. 4.3.
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Fig. 4.3 V1-H complex diffusing in a perfect 63 unit-cell supercell at 300K. Dashed lines are fits to
Eq. (4.2)

The second regime occurs around 5 × 10−3s, here the MSD of the H and Fe are approximately
the same. This occurs as the cluster+H co-diffuse via two mechanisms. The first is the 1

2 ⟨111⟩
vacancy hop into the complex with an activation energy of 0.84eV and kinetic pre-factor
2.33 × 1014Hz, followed by recapture of the H atom. The barrier is elevated compared to
the single vacancy due to the steric hindrance provided by the H atom but, this is partially
compensated for by the increase in the kinetic prefactor. The second mechanisms is limited by
the 0.52eV barrier for H de-trapping with a kinetic pre-factor of 2.38 × 1012Hz. The escaped
H-atom then “pushes” a Fe atom into the vacancy and becomes trapped in the newly formed
vacancy.

The third regime, above 6 × 10−3s, occurs once the H-atom begins to completely de-trap
from the vacancy, diffuse through the lattice and re-trapping at a vacancy then repeating the
cycle. This is visible as a large jump in the MSD of the H-atom in Fig. 4.3. This occurs through
tetrahedral-tetrahedral interstitial hops with an energy barrier of 0.048eV and kinetic pre-factor
5.52 × 1012Hz.

This culminates in an overall reduction in diffusivity as the co-diffusion mechanism competes
with the complete de-trapping and the 1

2 ⟨111⟩ hop’s barrier is elevated. The two order-of-
magnitude difference in the harmonic pre-factors is evidence that, the constant pre-factor
approximation should not be made for multi-element systems.
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Fig. 4.4 V2-H complex diffusing in a perfect 63 unit-cell supercell at 300K. Dashed lines are fits to
Eq. (4.2)

Unlike the MSD of the Fe atoms the MSD of the H atoms does not converge to a smooth
line in Fig. 4.3. This is because there is only a single H-atom so the fractional error in the MSD
remains constant.

V2-H complex

The V2-H complex follows a similar three regime behaviour as the V1-H complex however,
the V2 cluster contains 14 trap sites connected by 56 internal mechanisms. The energy barrier
for direct formation of the 4nn state remains close to the H free case however, this mechanism
is severely suppressed as the H atom remains in the unmoved vacancy. This results in the
4nn configuration being overwhelmingly likely to collapse into the original 2nn configuration
due to the steric hindrance from the H atom, hence no diffusion occurs. Additionally, the
H-atom increase the barrier of directly forming the 1nn configuration, suppressing diffusion via
1nn–2nn oscillations.

Alternatively, the V2-H complex diffuses similarly to the V1-H complex; the H atom first
escapes the cluster then “pushes” an atom into the cluster. This can form either the 4nn or 1nn
configuration with the H atom in the new vacancy, which then favours collapse into the translated
2nn state. The total energy barrier for the 4nn process is 0.66eV with a kinetic prefactor of
1.43 × 1012Hz. Again, we see the fall in kinetic pre-factor makes a major contribution to the
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Fig. 4.5 V3-H complex diffusing in a perfect 63 unit-cell supercell at 300K. Dashed lines are fits to
Eq. (4.2). The simulation was cut short due to an implementation error.

fall in diffusivity, compared to the 2V cluster. The 1nn pathway has a total energy barrier of
0.75eV meaning it contributes very little to the complex’s diffusion.

V3-H complex

The results gathered for the V3-H complex diffusion are presented in Fig. 4.5, unfortunately, due
to an implementation error, the simulation was cut-short before full convergence was achieved.
Additionally, as the de-trapping barrier remains high, de-trapping occurs over timescales around
10−2s hence, the H-diffusion is omitted from Fig. 4.5. Due to the increased size of the V3
cluster, the addition of an H-atom into one of its 18 trapping sites does not significantly alter
the energy barrier of the primary mechanism – sketched in Fig. 4.2h and Fig. 4.2i. The barrier
of the conservative mechanism becomes 0.49eV and its kinetic pre-factor is 2.72 × 1014Hz,
However these are only available in when the H-atom at an extreme end of the MEC. This
culminates in the diffusivity of the V3-H complex being fractionally lower than the V3 cluster.

V4-H complex

In Fig. 4.6, which shows the results for the V4-H complex diffusion, we see the same three
regimes that were visible during the during the V1/V2 complexes. Similar to the V3-H complex,
the increased size of the V4 cluster allows the same diffusion mechanisms to occur as for the
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Fig. 4.6 V4-H complex diffusing in a perfect 63 unit-cell supercell at 300K. Dashed lines are fits to
Eq. (4.2)

V4 cluster with very similar energy-barriers/pre-factors. This again results in a marginally
decreased diffusivity when compared to the hydrogen free case.

4.2.1 Summary

The diffusivity of the hydrogen in the presence of vacancy clusters is presented in Table 4.2.
The effective diffusivity of hydrogen increase for larger clusters. This could be due to falling
de-trapping barriers, rising trapping barriers, increased cluster surface-area or a combination of
these and possibly unknown effects.

The presence of hydrogen on vacancy clusters in α–Fe has been shown to reduce their
diffusivity. This is in agreement with the literature however, some studies suggest adding more
hydrogen atoms can reverse this trend [74]. The magnitude of the reduction in diffusivity
reduces as clusters become larger. This could be because only a single H-atom was used hence,
for larger clusters, mechanisms could occur without the H-atom directly interacting with them.
Future work should investigate the effect of increasing the number of H-atoms in the supercell.

The multi-scale nature of vacancy-hydrogen complex diffusion is prominent in many of the
figures in this section; OLKMC’s ability to span many time-scales has again proven crucial in
understanding these phenomenon. As more complex structures were simulated the diversity of
mechanisms increased rapidly, modelling this with traditional KMC would quickly become
intractable.



Chapter 5

Conclusion and future work

5.1 Conclusions

We have implemented a bleeding-edge off-lattice kinetic Monte Carlo simulator, incorporating
optimisations and enhancements from across the literature as well as our invariant and tolerant
local-environment equivalence classification scheme. We have investigated the diffusion of
vacancy clusters, with and without the addition of hydrogen, in the α-Fe lattice. Our key
contributions and results include:

• Development of the ITLEE method for saddle-point recycling, providing a rigorous con-
nection between equivalence and energy-differences between environments. Furthermore,
ITLEE is tolerant of small perturbations minimising the number of SP searches required.

• Applying OLKMC to autonomously identify the primary diffusion mechanisms of vacancy
clusters up to the V5 cluster.

• Simulating the diffusivities of the first six vacancy clusters and accurately reproducing
the mobility increase at V3 before returning to the expectation (reduced mobility for
larger clusters).

• Simulating the effect of a single H atom on the diffusivity of vacancy clusters and probing
the H-induced mechanisms causing this reduction – different for each complex. In all
investigated cases H reduced the cluster diffusivity.

• During our OLKMC simulations we compute the harmonic pre-factor as-well-as energy
barriers. We demonstrate pre-factors can vary by two orders-of-magnitude. Hence,
we suggest all OLKMC simulations (particularly in multi-element systems) verify the
constant pre-factor approximation carefully.
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The Fe-H system, with its small interstitials, multi-stage mechanisms, frequent flickering-
problems, varied harmonic pre-factors and sensitive energy-barriers present many challenges to
model with OLKMC. Nevertheless, many of these have been overcome and OLKMC has proved
an invaluable and capable tool for the study of these systems. This is extremely promising for
the future of modelling defect-H interactions and improving our understanding of HE at the
atomic scale.

5.2 Future work

Several optimisations to the OLKMC method/implementation are yet to be explored:

• We already create a catalogue of local environments hence, it would be possible to refine
the energy-barriers of the most frequent/critical mechanisms using ab initio force-fields.

• Migrating to a distributed-memory programming model would allow us to take advantage
of more parallelism during SP searches.

• Constructing a lattice approximation on-the-fly to elide global minimisations. This could
allow OLKMC to become competitive with hand-tuned KMC when it is possible to learn
all mechanisms quickly. (This is currently under active development with a collaborator)

• Augmenting the SP search procedure by taking into account knowledge of previously
discovered saddle-points in each LE would reduce/eliminate redundant SP searches. This
could be achieved through repulsive additions to the PES at known saddle-points or
moving toward a particle swarm optimiser [40] with a repulsive component between
dimers.

The last of these is a particularly-promising avenue for the acceleration of low symmetry
supercell which are SPS intensive. Therefore, this will be considered a prime focus for future
work.

The limiting factor underlying all OLKMC/MD simulations is the semi-empirical potentials.
Development of new potentials, focusing on H-defect interactions, using machine-learning
methods could also be done. This could improve both the speed and accuracy of OLKMC
simulations.

Off-lattice KMC is just as capable of modelling any system for which suitable potentials
exist, of particular interest are the Fe-C and Fe-H-C systems. The former could offer easier
experimental verification while the latter may be equally important in-order to understand HE.
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Finally, understanding HE will require modelling larger, more complex defects such as
grain-boundaries and dislocations. Initially, studying their interactions with single H-atoms
is the simplest path to build up a full understanding and should be on the horizon of future
work. For dislocations, this will first require validating the mechanisms of H diffusion around
an immobile dislocation, to later include strain-induced glide to determine how H affects
dislocation mobility and vice-versa.
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Appendices

A.1 Partial vector-derivative of the distance between atoms

Here we derive Eq. (3.4), repeated below for convenience:

∂rαβ

∂rγj
=

(
δγβ − δγα

)
r̂αβj (A.1)

where rα is the position vector of the αth atom, rαβ =
rαβ = r β − rα

 and δ is the
Kronecker delta. Starting from the definition of rαβ:[

rαβ
]2
= rαβi rαβi

∂

∂rγj

[
rαβ

]2
=
∂

∂rγj
rαβi rαβi

rαβ
∂rαβ

∂rγj
= rαβi

∂rαβi

∂rγj

∂rαβ

∂rγj
= r̂αβi

∂rαβi

∂rγj
(A.2)

then expanding rαβi = r βi − rαi :

∂rαβ

∂rγj
= r̂αβi

(
∂r βi
∂rγj
− ∂r

α
i

∂rγj

)
= r̂αβi

(
δγβδi j − δγαδi j

)
=

(
δγβ − δγα

)
r̂αβj (A.3)

we arrive at Eq. (3.4).
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A.2 Analytical form of the EAM Hessian

Here we simplify Eq. (3.7). We begin by separating the first term:

∂2U
∂rηi ∂r

γ
j

=
∑
α,γ

r̂αγj
∂ ÛVαγ
∂rηi

+
∑
α,γ

r̂αγj
∂

∂rηi

( ÛFγ Ûφαγ + ÛFα Ûφγα)
+

∑
α,γ

( ÛVαγ + ÛFγ Ûφαγ + ÛFα Ûφγα) ∂r̂αγj

∂rηi
(A.4)

then make progress on the partial-derivative in the final line:

∂r̂αγj

∂rηi
=
∂

∂rηi

rαγj

rαγ
=

1
rαγ
∂rαγj

∂rηi
− rαγj

(
1

rαγ

)2
∂rαγ

∂rηi
(A.5)

by applying Eq. (A.3) and rαγj = rγj − rαj we find:

∂r̂αγj

∂rηi
=

1
rαγ

∂

∂rηi

(
rγj − rαj

)
−

(
1

rαγ

)3
rαγj rαγi (δηγ − δηα)

=
1

rαγ
(δηγ − δηα) δi j − 1

rαγ
r̂αγj r̂αγi (δηγ − δηα)

=
1

rαγ
(δηγ − δηα)

(
δi j − r̂αγi r̂αγj

)
(A.6)

Substituting this back into Eq. (A.4) and splitting up the second line, we obtain:

∂2U
∂rηi ∂r

γ
j

=
∑
α,γ

r̂αγj
ÜVαγ ∂r

αγ

∂rηi

+
∑
α,γ

r̂αγj

(
ÛFγ ∂
Ûφαγ
∂rηi

+ Ûφαγ ∂
ÛFγ
∂rηi

)

+
∑
α,γ

r̂αγj

(
ÛFα ∂
Ûφγα
∂rηi

+ Ûφγα ∂
ÛFα
∂rηi

)
+

∑
α,γ

( ÛVαγ + ÛFγ Ûφαγ + ÛFα Ûφγα) 1
rαγ
(δηγ − δηα)

(
δi j − r̂αγi r̂αγj

)
(A.7)
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Taking Eq. (A.7), we expand the derivatives and contracting the final sum:

∂2U
∂rηi ∂r

γ
j

=
∑
α,γ

r̂αγj
ÜVαγ (δηγ − δηα) r̂αγi

+
∑
α,γ

r̂αγj

(
ÛFγ Üφαγ ∂r

αγ

∂rηi
+ Ûφαγ ÜFγ ∂ρ

γ

∂rηi

)

+
∑
α,γ

r̂αγj

(
ÛFα Üφγα ∂r

γα

∂rηi
+ Ûφγα ÜFα ∂ρ

α

∂rηi

)
+ δηγ

∑
α,γ

( ÛVαγ + ÛFγ Ûφαγ + ÛFα Ûφγα) 1
rαγ

(
δi j − r̂αγi r̂αγj

)
− (1 − δηγ) ( ÛVηγ + ÛFγ Ûφηγ + ÛFη Ûφγη) 1

rηγ

(
δi j − r̂ηγi r̂ηγj

)
(A.8)

then contracting the first sum and expanding the derivatives a second time to arrive at:

∂2U
∂rηi ∂r

γ
j

= δηγ
∑
α,γ

ÜVαγr̂αγi r̂αγj − (1 − δηγ) ÜVηγr̂
ηγ
i r̂ηγj

+
∑
α,γ

r̂αγj

(
ÛFγ Üφαγ (δηγ − δηα) r̂αγi +

Ûφαγ ÜFγ
∑
β,γ

Ûφβγ
(
δηγ − δηβ

)
r̂ βγi

)

+
∑
α,γ

r̂αγj

(
ÛFα Üφγα (δηα − δηγ) r̂γαi +

Ûφγα ÜFα
∑
β,α

Ûφβα
(
δηα − δηβ

)
r̂ βαi

)
+ δηγ

∑
α,γ

( ÛVαγ + ÛFγ Ûφαγ + ÛFα Ûφγα) 1
rαγ

(
δi j − r̂αγi r̂αγj

)
− (1 − δηγ) ( ÛVηγ + ÛFγ Ûφηγ + ÛFη Ûφγη) 1

rηγ

(
δi j − r̂ηγi r̂ηγj

)
(A.9)
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wherein we split up the second and third lines before recombining them to yield:

∂2U
∂rηi ∂r

γ
j

= δηγ
∑
α,γ

ÜVαγr̂αγi r̂αγj − (1 − δηγ) ÜVηγr̂
ηγ
i r̂ηγj

+
∑
α,γ

r̂αγj
ÛFγ Üφαγ (δηγ − δηα) r̂αγi + r̂αγj

ÛFα Üφγα (δηα − δηγ) r̂γαi

+
∑
α,γ

∑
β,γ

r̂αγj
Ûφαγ ÜFγ Ûφβγ (δηγ) r̂ βγi

+
∑
α,γ

∑
β,α

r̂αγj
Ûφγα ÜFα Ûφβα (δηα) r̂ βαi −

∑
α,γ

∑
β,γ

r̂αγj
Ûφαγ ÜFγ Ûφβγ

(
δηβ

)
r̂ βγi

−
∑
α,γ

∑
β,α

r̂αγj
Ûφγα ÜFα Ûφβα

(
δηβ

)
r̂ βαi

+ δηγ
∑
α,γ

( ÛVαγ + ÛFγ Ûφαγ + ÛFα Ûφγα) 1
rαγ

(
δi j − r̂αγi r̂αγj

)
− (1 − δηγ) ( ÛVηγ + ÛFγ Ûφηγ + ÛFη Ûφγη) 1

rηγ

(
δi j − r̂ηγi r̂ηγj

)
(A.10)

finally, contracting the remaining Kronecker deltas, we arrive at an expression for the Hessian:

∂2U
∂rηi ∂r

γ
j

= δηγ
∑
α,γ

ÜVαγr̂αγi r̂αγj − (1 − δηγ) ÜVηγr̂
ηγ
i r̂ηγj

+ δηγ
∑
α,γ

( ÛFγ Üφαγ + ÛFα Üφγα) r̂αγi r̂αγj − (1 − δηγ)
( ÛFγ Üφηγ + ÛFη Üφγη) r̂ηγi r̂ηγj

+ δηγ
∑
α,γ

∑
β,γ

r̂αγj
Ûφαγ ÜFγ Ûφβγr̂ βγi

+ (1 − δηγ)
[∑
α,η

r̂ηγj
Ûφγη ÜFη Ûφαηr̂αηi −

∑
α,γ

r̂αγj
Ûφαγ ÜFγ Ûφηγr̂ηγi

]
−

∑
α,γ,η

r̂αγj
Ûφγα ÜFα Ûφηαr̂ηαi

+ δηγ
∑
α,γ

( ÛVαγ + ÛFγ Ûφαγ + ÛFα Ûφγα) 1
rαγ

(
δi j − r̂αγi r̂αγj

)
− (1 − δηγ) ( ÛVηγ + ÛFγ Ûφηγ + ÛFη Ûφγη) 1

rηγ

(
δi j − r̂ηγi r̂ηγj

)
(A.11)
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Equation (A.11) has two very-separate regimes for the block-diagonal and off-diagonal
elements of the Hessian. Exploring the block-diagonal elements, for which η = γ:

∂2U
∂rγi ∂r

γ
j

+
∑
α,γ

( ÜVαγ + ÛFγ Üφαγ + ÛFα Üφγα + ÜFα Ûφγα Ûφγα) r̂αγi r̂αγj

+ ÜFγ
[∑
β,γ

Ûφβγr̂ βγi

] [∑
α,γ

Ûφαγr̂αγj

]
+

∑
α,γ

( ÛVαγ + ÛFγ Ûφαγ + ÛFα Ûφγα) 1
rαγ

(
δi j − r̂αγi r̂αγj

)
(A.12)

which, if we introduce the electron-density dipole:

µ
β
i =

∑
α,β

Ûφαβr̂αβi (A.13)

and symmetric tensors A, B such that:

Aαβ =
ÛVαβ + ÛF β Ûφαβ + ÛFα Ûφβα

rαβ
and Bαβ = ÜVαγ + ÛFγ Üφαγ + ÛFα Üφγα (A.14)

becomes:

∂2U
∂rγi ∂r

γ
j

= ÜFγµγi µ
γ
j +

∑
α,γ

Aαγδi j +
(
Aαγ − Bαγ − ÜFα Ûφγα Ûφγα) r̂αγi r̂γαj (A.15)

Here the sum over α runs over all neighbours of γ and we require the density ρα of all of these
neighbours. However, if we loop twice over all atoms, in the first pass we can compute µ, ρ for
each atom and in the second pass evaluate the block-diagonal Hessian elements.
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For the off-diagonal elements of the Hessian, for which η , γ, we can simplify Eq. (A.11)
to:

∂2U
∂rηi ∂r

γ
j

�����
η,γ

= − ( ÜVηγ + ÛFγ Üφηγ + ÛFη Üφγη) r̂ηγi r̂ηγj

+
∑
α,η

r̂ηγj
Ûφγη ÜFη Ûφαηr̂αηi −

∑
α,γ

r̂αγj
Ûφαγ ÜFγ Ûφηγr̂ηγi

−
∑
α,γ,η

Ûφγα ÜFα Ûφηαr̂ηαi r̂αγj

− ( ÛVηγ + ÛFγ Ûφηγ + ÛFη Ûφγη) 1
rηγ

(
δi j − r̂ηγi r̂ηγj

)
(A.16)

which – after substituting in the gradient-component function and electron-density dipole –
reduces to:

∂2U
∂rηi ∂r

γ
j

�����
η,γ

= (Bηγ − Aηγ) r̂ηγi r̂γηj − Aηγδi j + ÜFη Ûφγηµηi r̂ηγj − ÜFγ Ûφηγr̂
ηγ
i µ

γ
j − Oηγi j (A.17)

Here the first four terms are non-zero when rηγ < rcut and depend on µη, µβ, ρη and ρβ – which
can be computed on the first pass of a two-loop evaluation. However, the overlap term:

Oηγi j =
∑
α,γ,η

ÜFα Ûφγα Ûφηαr̂ηαi r̂αγj (A.18)

is more complex as the sum runs-over the intersection of the neighbours of atoms η and γ thus,
can be non-zero when rηγ < 2rcut.
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