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Abstract

The project aims to implement an off-lattice kinetic Monte Carlo model, based on the dimer
saddle-point finding method, suitable for simulating the interaction of hydrogen with crystal
defects in iron, such as vacancies, grain-boundaries and dislocations, over timescales not
achievable with classical methods including molecular dynamics. The framework is used to
interrogate the mechanisms of hydrogen embrittlement, causing severe loss in ductility in steels
with complicated microstructures, focusing on hydrogen-vacancy systems.
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Chapter 1

Introduction

The objective of this project is to develop and implement, from the ground up, a tool capable of
modelling the complex interactions between crystal defects and hydrogen (H) in iron (Fe), into
the timescales required to study hydrogen embrittlement (HE). Hydrogen embrittlement is the
long-studied phenomena wherein, metals exposed to hydrogen undergo a catastrophic ductile to
brittle transformation, causing failure below the yield stress. Despite years of study, the full
mechanisms of HE are not yet fully understood [6].

The simulation technique chosen is the off-lattice kinetic Monte Carlo (OLKMC) model, this
is an extension to the traditional kinetic Monte Carlo (KMC) algorithm, described in Section 1.2.
KMC is the lowest level of theory that can currently be used to model non-equilibrium processes
at the atomistic scale into the timescales required to investigate HE, up to the order of seconds.
OLKMC extends KMC to a continuous description of the system, this massively expands KMC
to the generality of molecular dynamics (MD) and frees the method from the need to know
all possible mechanisms a priori. This is particularly important as there are numerous cases
when the atomistic mechanism of some process has been incorrectly identified [23, 20], as
mechanisms can significantly deviate from the simplest pathway. OLKMC operates on a set of
atoms in 3D space and uses a force field to describe the interaction between atoms. This force
field is the limiting level of theory in OLKMC; we choose to use a semi-empirical force field,
placing our model at the same theoretical baseline as MD.

The decision to work from the ground up rather than building on other implementations [68,
52] was twofold. Firstly, the techniques employed in OLKMC – fully explored in Chapter 3
– have rapidly evolved over the last twenty years, they are reviewed in Chapter 2. Hence,
older implementations lack critical optimisations, reworking them at this stage would be more
complex than restarting. Secondly, a full understanding of the method, required to develop
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Fig. 1.1 Diagram of the BCC unit cell of Fe atoms (black) alongside the tetrahedral interstices marked
(unfilled circles). The lattice parameter is 2.8557Å. The thick grey lines act as a guide to the eye to
highlight the tetrahedral shape. Hydrogen atoms can occupy the tetrahedral interstices; marked with red
arrows are the seven nearest-neighbour (nn) tetrahedral-tetrahedral adjacencies. The corresponding nn
separations are: 1.01, 1.43, 1.75, 2.02, 2.26, 2.47 and 2.67Å, respectively.

the theory in future work, can only be achieved by exploring every subroutine and recursively
understanding them and their limitations.

The remainder of the report is structured as follows: Section 1.1 is a brief summary of the
Fe-H system and HE; Section 1.2 summarises the long-established theory of KMC as a primer
to introduce OLKMC; Chapter 2, the literature review, explores the progression of the OLKMC
and current state-of-the-art methods; Chapter 3 details the theory and implementation of all
the numerical methods employed in this work surrounding OLKMC; in Chapter 4 we verify
our implementation and methodology across a series of well explored systems; in Chapter 5
we present the results and discussion of modelling hydrogen, vacancy (V) and V-H complex
diffusion in the α-Fe lattice using OLKMC and finally, in Chapter 6 we present our conclusions
and suggestions for future work.

1.1 The Fe-H system
Iron and its alloys are particularly important engineering materials therefore, the focus shall be
HE in the α-Fe allotrope which is the primary phase of mild steels. α-Fe, or ferrite, has a body-
centred cubic (BCC) lattice structure with two atoms per unit cell, presented diagrammatically in
Fig. 1.1. There exist two types of interstitial sites in the BCC lattice, tetrahedral and octahedral.
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Experimental measurement and density functional theory (DFT) calculations have shown that
hydrogen preferably dissolves in the tetrahedral sites with a dissolution energy of approximately
0.3eV [75, 42]. There are 12 tetrahedral sites per unit cell, they are marked in Fig. 1.1.

Hydrogen has a low solubility in iron but high diffusivity [29] but, it is understood crystal
defects can act as traps for diffusing hydrogen. Hydrogen can bind strongly to vacancies,
dislocations and grain boundaries (GB), this reduces hydrogen mobility/diffusivity. It is
therefore common to distinguish between between freely diffusible hydrogen in the lattice and
trapped hydrogen bound to crystal defects. There exists an entire theoretical understanding of
hydrogen trapping in equilibrium such as Oriani’s trapping theory [64].

1.1.1 Hydrogen embrittlement
Many mechanisms for HE have been proposed, almost all of them revolve around the interactions
between hydrogen and crystal defects, which have long been understood to play a critical role
in the deformation of metals. For a full reference to all of the following mechanisms see the
review by Barrera et al. [6]. In extreme brief, the predominant HE mechanism theories fall into
several categories:

• Hydrogen-enhanced localised plasticity (HELP) postulates that, possibly through the
formation of Cottrell-like atmospheres, hydrogen increases the mobility of dislocations
causing increased plasticity, localised to regions containing hydrogen.

• Hydrogen-enhanced strain-induced vacancy (HESIV) formation explains HE as a con-
sequence of hydrogen causing a superabundance of vacancies, which coalesce to form
nanovoids/microvoids, offering low-energy pathways for crack propagation.

• Hydrogen-induced decohesion (HID) is the one of the oldest ideas [70] and suggests that
the presence of hydrogen in the α-Fe lattice weakens the Fe-Fe bonding and reduces the
strain at which decohesion occurs, e.g. at grain boundaries.

• Adsorption-induced decohesion (AIDE) likens HE to stress corrosion cracking, implying
the adsorption of hydrogen at the crack tip facilitates dislocation emission and is
responsible for hydrogen-induced cracking.

• Hydrogen-induced phase transformation (HIPT) predicts high hydrogen concentrations
triggers embrittling phase transformations. In particular, martensitic transformations
of the face-centred cubic (FCC) γ phase to hexagonally closed packed (HCP) or BCC
phases.
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The bodies of evidence supporting many of these ideas makes it probable that a full description of
HE contains a combination of two/three of these mechanisms (alongside some yet undiscovered)
as few are orthogonal to each other.

The richness in mechanisms is vast – due to the breadth of hydrogen interactions with
crystal defects – and we will restrict this work to explore V-H interactions as a case-study for
validating our method. Vacancies, as point-defects, are the simplest of crystal defects, so are a
natural starting point. Nevertheless, the ideas of the HESIV theory suggests their behaviour are
no less significant to understanding HE.

1.2 Kinetic Monte Carlo
Interesting events/long-timescale dynamics are dominated by rare events which are often outside
the reach of MD. By ignoring atomic vibrations and representing the time evolution of a system
as a series of discrete transitions between local minima or basins, KMC overcomes this hurdle.
Kinetic Monte Carlo is part of a wider collection of stochastic Monte Carlo (MC) methods that
use random numbers to walk Markov chains through state space and approximate a distribution
of interest. At the cost of losing the explicit trajectory of atoms we can simulate over much
longer timescales than MD, up to seconds for some systems.

The connection between basins in the KMC framework is the set of rate constants Γi j that
represent the probability per unit time or frequency of making the transition from state i → j.
These rate constants are independent of the systems history, thus forming a Markov chain. It is
the use of rates linking states (as opposed to energy changes, used in the Metropolis–Hastings
(MH) algorithm[36]) that enable KMC to probe non-equilibrium phenomena.

Under the kinetic Monte Carlo framework, using the rejection-free n-fold way algorithm [13],
with the system in state i, the next state k is selected as the solution to:

k−1∑
j=1
Γi j < ρ1

n∑
j=1
Γi j ≤

k∑
j=1
Γi j (1.1)

where ρ1 ∈ (0,1] is a uniform random number and j, k ∈ {1,2, . . . ,n}. This ensures the
probability of transitioning to a new state is proportional to its rate.

The KMC walk models a Poisson process and therefore the time elapsed during a single
MC step is [12]:

∆t =
− ln (ρ2)∑n

j=1 Γi j
(1.2)
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where ρ2 ∈ (0,1] is a second uniform random number. Both equations require knowledge of
the complete set of non-zero rate constants connected to a given state.

1.2.1 Harmonic transition state theory
Within the approximation of harmonic transition state theory we can obtain the set of rate
constants from the potential energy surface (PES); the rate constant connecting i → j via a
single, first-order, saddle-point ‡ is described by the Arrhenius equation [82]:

ΓTST
i j = ν̃i je−β(E‡−E i) (1.3)

where β = 1
kBT , ν̃i j is the attempt frequency and E‡, E i are the energies of the system at the

saddle point and state i, respectively. This approximation holds well for metals away from their
melting point as the atoms are rigidly held in place and the basins well approximated by a
quadratic expansion [82]. Furthermore, assuming the PES is quadratic near the saddle point
then:

ν̃i j =

∏N
k=1 ν

i
k∏N−1

k=1 ν
‡
k

(1.4)

where ν‡k , νi
k are the real normal-mode frequencies at the saddle point and state i respectively. It

is common to set ν̃i j = v, a constant [52, 81] due to the high cost to compute νi j , the fact it
varies little between mechanisms in the same metal and the exponential influence of

(
E‡ − E i )

on ΓTST
i j having a much larger affect than the linear multiplier ν̃i j .

Therefore, we have reduced the problem of finding all non-zero rate constants to finding the
energies of all the saddle points adjacent to some initial basin that connects it to surrounding
basins. This is the fundamental idea behind OLKMC; we no longer require any kind of lattice
to discretise the possible transition that can occur, only a method for finding saddle-points of
the potential energy.



Chapter 2

Literature review

As we developed our OLKMC implementation from the ground up, a broad literature review was
conducted. We explored not only the saddle-point (SP) search methods that OLKMC is directly
built upon, but also the broader collection of numerical methods for function optimisation
and empirical force field calculations. We shall now summarise the key developments in the
literature, in a approximately chronological order, that this is work is built-upon.

2.1 Off-lattice kinetic Monte Carlo methods
Henkelman and Jónsson’s [38] (2001) seminal paper is the first to describe the exciting
OLKMC method, extending KMC simulations to off-lattice environments with no preconceived
notion of transition pathways/mechanisms. This is achieved through a search of the potential
energy landscape, using their efficient dimer method [37], to locate saddle points adjacent to
the occupied local minima. The harmonic transition state theory (HTST) approximation is then
applied to find the corresponding transition rates; then time progressed with the traditional
KMC algorithm and the system is progressed to an adjacent basin. This process is summarised
in Fig. 2.1 in a model potential. Henkelman and Jónsson report finding several, novel 3/4 atom
processes for adatom descent on the Al(100) surface, that are rate competitive with the standard
2 atom process. Many potential optimisations such as SP caching and active volume partitioning
have yet to be explored.

El-Mellouhi, Mousseau, and Lewis’s [52] (2008) crucial contribution to the off-lattice
KMC literature is the introduction of local topological classification, based on the nauty [50]
graph library. This allows for reconstruction of saddle points from those previously discovered,
significantly reducing the computational workload by avoiding many SP searches. Although
the topological classification may not exploit all geometric information available (and relies on
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Fig. 2.1 Diagram of the OLKMC method, adapted from Henkelman and Jónsson [38], using a model
two-dimensional potential. The simulation starts in basin A in Fig. 2.1a, several SP searches are launched
(dotted lines), converging onto saddle points (stars). In Fig. 2.1b the pathways/mechanisms to adjacent
basins via the saddle-points are highlighted. The KMC algorithm is applied between Fig. 2.1b and
Fig. 2.1c, choosing the mechanisms which moves the system to basin B. The process then repeats,
identifying the mechanisms out of basin B in Fig. 2.1d.

heavy graph algorithms), it produces an impressive speed up, enabling OLKMC to compete
with traditional KMC for highly symmetric problems. Local topological classification can
completely elide SP searches after translationally symmetric mechanisms. This is significant,
as previously OLKMC was only superior to traditional KMC when the problem was sufficiently
complex that the mechanisms and rate constants were unknown or too diverse to categorise.

OLKMC is particularly promising for exploring HE, as it requires no a priori knowledge of
the mechanisms, meaning it introduces no human bias into the search. Furthermore, it is capable
of reaching HE timescales and removes the constraint of hand-coding a lattice, appropriate
for every crystal defect; a recent comprehensive review by Trochet et al. [81] fully explores
OLKMC. We shall now discuss some of the papers expanding on the dimer method.

2.1.1 The dimer method
Henkelman and Jónsson [37] (1999) presented an efficiently scaling method to determine the
saddle-points surrounding a potential-energy well, named the dimer method. The dimer is an
object, which explores the potential energy surface (PES) and is constructed from a pair of
images of the system displaced by a small amount. Successive rotations, minimising the total
energy, and translations, following an effective force, orient the dimer with lowest curvature
mode and move the dimer towards a saddle point. Figure 2.2 summarises how the dimer
converges to a SP. By varying the initial orientation of the dimer and perturbing the initial state,
different saddle points can be found. The authors are able to apply the dimer method to find
saddle points for reaction pathways on the Al(100) surface using an embedded atom model
(EAM) potential.
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Saddle point
Dimer path
Images
Force on dimer
Translational force

Fig. 2.2 Diagram of a dimer converging to a SP in a model two-dimensional potential. The dimer
is rotated between each step to minimise its rotational potential energy, aligning its axis with the
minimum-mode. The displacement between image-pairs for each dimer has been exaggerated for clarity.
The force and the effective translational force on the dimer are marked for each step.

This improves over previous minimum-mode following algorithms [14] that require calcula-
tion (involving second order derivatives) and inversion of the Hessian matrix, a computationally
expensive process. The dimer method requires only the initial basin to locate saddle points,
unlike the nudged elastic band (NEB) [43] method, which also requires the target basin. The
dimer method is particularly suited to the Fe-H system as good, fast semi-empirical potentials
exist [75, 80].

Heyden, Bell, and Keil [39] (2005) constructed the improved dimer method, building on
the original dimer method [37], which halves the number of force calculations during dimer
translations and reduces the number of force calculations during rotation from six to four. This
is achieved by working with the potential gradients at the centre and one end of the dimer (as
opposed to each end), such that the central gradient can be reused during rotations. Furthermore,
through a Fourier series expansion of the curvature and approximation of its second derivative,
a better guess for the dimer rotation can be made and a rapid convergence to the minimum
mode is achieved. In all, these are an effortless set of optimisations to be included.

Kästner and Sherwood [45] (2008) further optimised the improved dimer method [39].
This is achieved by exploiting the planarity of the rotated dimer to extrapolate one of the
gradients at the dimer end, thus saving a force call per rotation. Additionally, the limited-
memory formulation of the Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) optimiser [49, 62]
is employed to determine the plane of rotation and dimer translation step. This is demonstrated
to converge faster than conjugate gradient (CG) methods and removes an energy calculation
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Fig. 2.3 A comparison of several minimum-mode finding algorithms, taken from Zeng, Xiao, and
Henkelman [88]. To the right is a zoom, on the region of relevance, for the fastest three methods.

per translation. The convergence of the dimer to a saddle point is shown to scale superlinearly
with the number of degrees of freedom and is thus referred to as the superlinear dimer method.
The authors do not fully describe the coupling of their dimer method to the L-BFGS optimiser
however, their results clearly demonstrate improvement.

Xiao, Wu, and Henkelman [86] (2014) began with the original dimer method [37] and
attempt to avoid locating saddle points disconnected from the initial local minima. A common
problem that occurs in OLKMC SP searching, that results in useless saddle points. This is
achieved by weighting the parallel and perpendicular components of the effective translational
forces applied to the dimer, by functions of the local isopotential curvature, κ. The isopotential
curvature is shown to typically have positive sign in regions near the true ridge between basins
of the potential energy thus, the dimer can be prevented from crossing the true ridge. The
κ-dimer method is shown to find connected saddles > 99% of the time (compared to ≈ 70% for
the traditional dimer method) at the cost of twice as many force calls.

Finally, Zeng, Xiao, and Henkelman [88] (2014) unified several minimum-mode following
algorithms (including the dimer method) under one mathematical framework. They prove all
investigated methods are bounded in efficiency by the Lanczos method [48]. In numerical tests
the L-BFGS dimer method was shown to converge almost as fast as the Lanczos method but
require fewer force evaluations, their results are reproduced in Fig. 2.3. This is the basis for our
choice to uses the dimer method.
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2.2 Empirical potentials for the Fe-H system
As discussed in Chapter 1 the limiting level of theory in OLKMC is the underlying potential. As
we wish to simulate HE timescales an ab initio approach, such as DFT, is well out of reach due
to the poor quantum scaling. Therefore, an accurate fast semi-empirical potential is required;
ideally, well tested and incorporating fitting targets from quantum calculations and experiment.
Accurately reproducing DFT results for crystal defect structures/interaction is a long standing
challenge for semi-empirical potentials and is pivotal for exploring HE as defect-H interactions
are understood to play such an important role.

Finnis and Sinclair’s [25] (1984) embedded atom model (EAM) is an empirical potential
for describing the metallic bonding in transition metals. The EAM potential form includes a
traditional pairwise repulsive component alongside a new embedding term. It approximately
takes into account the band character, via the second-moment approximation to the tight-binding
model thus, scaling the cohesive energy with the atomic coordination, z, as

√
z. The authors

fit their model to a selection of experimental data for several transition metals and are able
to successfully describe the vacancy formation energy, something not previously possible
with pairwise potentials due to their lack of generality and intrinsic mathematical limitations.
Crucially, EAM potentials are sufficiently short range to enable fast MD simulations and have
therefore become well established in the literature.

Ramasubramaniam, Itakura, and Carter [75] (2009) presented a set of modified EAM
potential for the Fe-H system, the EAM embedding function is generalised to obtain better fits
to first-principles (DFT) measurements and experimental data. The wide variety of the fitting
targets (perfect crystal, point defect, surface measurements, etc) provide good reproduction of
several crystal defect structures, including the sixfold symmetry of screw dislocation cores. The
authors investigate the V-H and screw-H interaction energies and demonstrate the potentials
provide good matches to DFT studies. The results show that semi-empirical potentials can be
used to study defect-H interactions, to probe HE mechanisms.

Finally, Song and Curtin [80] (2012) built upon the potentials of Ramasubramaniam,
Itakura, and Carter [75], introducing an additional H-H repulsive component to reduce the
observed tendency for hydrogen clustering in the original potentials. The new potentials are
used in a MD crack-tip simulation in α-Fe; HE via suppression of dislocation emission is
observed. The work highlights the power of semi-empirical potentials for investigating HE
mechanisms as well as the need for further improving said potentials. Furthermore, the results
demonstrate that, although empirical potentials are not yet perfect, they can be used to study
HE and obtain insightful results.
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2.3 Numerical methods
Liu and Nocedal [49] (1989) introduce a limited-memory version of the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) optimiser named the L-BFGS method. This method is an extension
of CG methods – storing a fixed (user controlled) amount of search history – that approximates
the inverse Hessian and accelerates convergence. Furthermore, scaling methods are presented
to allow for good initial estimates of the step size thus, eliding many line searches. The L-BFGS
method is shown to converge rapidly for large problems and outperform other quasi-Newton
methods. This is the optimiser Kästner and Sherwood employed in the superlinear dimer
method; care must be taken during the line-search procedure as Liu and Nocedal make no
provision for the failure to uphold the strong Wolfe conditions [84, 85].

Welling and Germano [83] (2011) compared a number of linked cell list (LCL) algorithms
that efficiently determining the neighbours within some cut of radius rcut of an atom, to accelerate
force calculations. Key considerations for their algorithms include the cell size to rcut ratio,
cyclic boundary implementation, cache locality and projection sorting (PS) methods. They
conclude the linked cell reordering algorithm (LCR) is the fastest of the non-PS methods. Due
to the high complexity of PS methods, but relatively small performance gains reported, we
conclude the LCR methods are the superior choice. This paper forms the basis for our EAM
force field implementation.

2.4 Atomistics of hydrogen in metals
Here we summarise some works modelling HE and using OLKMC to appreciate current,
cutting-edge methods and establish the breadth of applicability of OLKMC.

Katzarov, Pashov, and Paxton [46] (2017) used a discretised line-model of the α-Fe
1
2 [111] screw dislocation, embedded in a hexagonal lattice and the traditional KMC algorithm
to study its time evolution. The transition rates are parametrised on experimental measurements
and DFT simulations with and without hydrogen, as well as empirical fits to MD simulations.

The simulations show that screw dislocation diffusivity is strongly dependant on hydrogen
concentration, applied stress and temperature. In low concentrations, hydrogen enhances
dislocation mobility, but inhibits mobility at high concentrations. Some transitions/mechanisms
such as edge segment climb, as well as hydrogen interaction with the surrounding lattice, have
been omitted for simplicity. This, alongside the 1

2 [111] screw dislocation specific nature of the
paper, suggest it would be challenging to extend this kind of model to include multiple kinds of
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crystal defects and richer hydrogen interactions but, the potential for atomistic simulations to
probe HE is clear.

Benediktsson et al. [9] (2013) explored the energy landscape of V-H complexes in
aluminium (Al) through first principles calculations and minimum-mode following methods.
Several mechanism/pathways for V-H dissociation are observed including multi-atom transitions.
The energy barriers for vacancy diffusion are observed to increase with increasing hydrogen
saturation. The barrier with a single hydrogen atom is similar to the bulk, but two hydrogen
atoms incurs a ≈ 20% increase while four hydrogen atoms causes the complex to become
immobile. These sessile V-H complexes are proposed as nucleation sites for extended crystal
defects.

Momida et al. [56] (2013) investigated the interactions between hydrogen, vacancies and
Σ3 grain boundaries in iron through first-principles calculations. Hydrogen and V-H complexes
are observed to be stabilised by grain boundaries. V-H complexes are shown to have a stronger
embrittling effect on the GB than H. Long time scale migration of V-H complexes to grain
boundaries is proposed as a mechanism for delayed HE. This highlights the need for a better
understanding of how hydrogen impacts vacancy diffusion.

Finally, Pedersen and Jonsson [67] (2009) used an OLKMC model to study hydrogen
diffusion in aluminium. The paper demonstrates two key advancements in OLKMC: the
modelling of large-scale crystal defects, in this case the Σ5 twist/tilt grain boundaries, over
timescales of tens of µs and the interaction of interstitial hydrogen atoms with the partially
disordered GB. The minimum-mode following method is used to find saddle points and the
minimum mode is found through the dimer method [37]. The simulations suggest grain
boundaries in general impede diffusion and offer explanations for the observed variation in
hydrogen diffusivity with grain size. Crucially, only a single H atom was simulated diffusing in
the model and therefore H-H interactions have been omitted, this can clearly be improved upon.

2.5 Summary
Off-lattice KMC is a developing method, for which multiple improvements and optimisations
have been found since its inception. It seems perfectly suited to studying the complex phenomena
of HE as it captures mechanisms at the atom level, can reach KMC timescales and does not
require a priori knowledge of mechanisms. The need for a from-the-ground-up implementation
is clear, to fully integrate new methods and lay solid foundations for tackling the hurdles that
are sure to arise when applying OLKMC to the Fe-H system.



Chapter 3

Numerical methods

The following chapter explores in detail the numerical methods employed in this work as well as
discussing their implementation. Beginning with Section 3.1 we describe the form of the EAM
used in this work and the strategies used to efficiently implement them. Section 3.2 reviews the
state-of-the-art methods for computing sums over atom pairs, including the linked cell reordering
(LCR) method. The classical L-BFGS optimiser is reviewed in Section 3.3 to understand how
it can be implemented in problems were the potential is not known explicitly. Section 3.4
describes the dimer method for saddle-point finding, tying together several advancements in the
literature since its inception. Additionally, modifications to the dimer translational stage are
discussed to improve the line-search when using the L-BFGS optimiser. Section 3.5 details the
system employed for caching saddle-point searches by analysing the local topology around a
mechanisms centre and reconstructing future mechanisms from a topological key. Finally, the
mean rate method extension to KMC is explored to solve the low-barrier problem and refined to
fit the requirements of OLKMC and topological caching.

3.1 EAM potentials
Before we can begin to systematically discover saddle points (required for finding mechanisms
and rate constants) we need a description of the potential energy surface for a collection of
atoms. Although ab initio methods such as DFT exist that could fulfil this role, due to their high
computational cost, we must resort to semi-empirical potentials. The embedded atom method,
originally developed by Finnis and Sinclair [25], describes the potential energy of a collection
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of atoms at positions {rα}:

U = UP +UN (3.1)

The potential is separated into a classical pairwise potential UP as well as UN the N-body or
embedding potential. The generalised form of the embedding potential is:

UN =
∑
β

F β
(
ρβ

)
(3.2)

ρβ =
∑
α,β

φαβ
(
rαβ

)
(3.3)

where we have adopted superscripts with Greek letters to refer to the atom index; rαβ =
rαβ =r β − rα

 being the atomic separations; F β the embedding function of the βth atom and φαβ the
electron density of the αth atom acting at the βth atom. Strictly speaking, the embedding and
potential functions are empirically chosen and do not represent physical electron densities [25].

The generalised pairwise potential takes the familiar form:

UP =
1
2

∑
α,β
α,β

Vαβ
(
rαβ

)
(3.4)

with Vαβ a symmetric pair-potential term such that Vαβ = V βα.
The choice of a non-trivial embedding function means the EAM potential is no longer

expressible as the sum of a pair potential over all atom pairs; this generalisation is required to
prevent the fulfilment of many of the Cauchy relations [22] on the elastic constants and match
experimental observations. Choosing F (ρ) = −A

√
ρ as motivated by the second-moment

approximation to tight binding reduces Eq. (3.2) to that originally described by Finnis and
Sinclair [25]. Although this is physically motivated, better fitting can be achieved by relaxing
this to a more general function, this is the approach taken in the potentials used in this work [75,
1, 54]. If electron density is independent of the sync atom such φαβ = φα, the EAM potential
reduces to the Daw and Baskes form [17, 18, 26]. Finally, the functional forms of V and φ
are chosen such that ∀rαβ > rcut,V

(
rαβ

)
= φ

(
rαβ

)
= F (0) = 0 in this way the potentials are

described as local.
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The forces acting on each atom are required for MD simulations and saddle point finding
methods; noting (see Appendix A.1 for a derivation):

∂rαβ

∂rγ
=

(
δγβ − δγα

)
r̂αβ (3.5)

the forces from the pairwise potential UP take the conventional form:

f
γ

P = −
∂UP

∂rγ
= −1

2

∑
α,β
α,β

V ′αβ
(
δγβ − δγα

)
r̂αβ = −

∑
α,γ

V ′αγ r̂αγ (3.6)

where we have dropped the explicit function arguments for compactness such that:

V ′αβ =
∂Vαβ

∂r

����
r=rαβ

(3.7)

The forces from the embedding potential take the more complex form:

f
γ
N = −

∂UN

∂rγ
= −

∑
β

F′β
∂ρβ

∂rγ
= −

∑
α,β
α,β

F′βφ′αβ
∂rαβ

∂rγ
(3.8)

where:

F′β =
∂F β

∂ρ

����
ρ=ρβ

and φ′αβ =
∂φαβ

∂r

����
r=rαβ

(3.9)

Applying Eq. (3.5) to Eq. (3.8) we then obtain:

f
γ
N = −

∑
α,β
α,β

F′βφ′αβ
(
δγβ − δγα

)
r̂αβ

= −
∑
α,γ

F′γφ′αγ r̂αγ +
∑
β,γ

F′βφ′γβ r̂γβ

= −
∑
α,γ

F′γφ′αγ r̂αγ −
∑
α,γ

F′αφ′γα r̂αγ

= −
∑
α,γ

(F′γφ′αγ + F′αφ′γα) r̂αγ (3.10)
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(a) (b) (c) (d)

Fig. 3.1 Two-dimensional representation of the cells (blue) that contain atoms that could be within rcut
of the central atom (black dot). The cut-off radius is marked with a dashed circle. The cell sizes in
Fig. 3.1a, Fig. 3.1b, Fig. 3.1c and Fig. 3.1d are rcut, rcut

2 , rcut
5 and rcut

10 , respectively.

where we have used the antisymmetry of rαβ in the second line. The forces still act along the
line between each atom as in Eq. (3.6) however, an additional summation over all atoms is
required for evaluating ρα for every atom. The first term of Eq. (3.10) describes the force due
to the change in the electron density at the γth atom, while the second term describes the force
due to the change in electron density at the αth atom due to the movement of the γth atom. The
total force is thus:

f γ = f
γ

P + f
γ
N = −

∑
α,γ

(V ′αγ + F′γφ′αγ + F′αφ′γα) r̂αγ (3.11)

Due to the complexity of the analytic forms of the fitted functions and the high cost of
evaluating them we pre-compute and tabulate the 9 EAM functions. During the simulation we
pre-compute and store the natural cubic spline coefficients [2] from the tabulated values, then
reconstruct the smooth functions and their differentials appropriately.

Finally, the observation is made that during the calculation of the force on all atoms, the
evaluation of ρα required for F′α in Eq. (3.11) requires a sum over second nearest neighbours. To
avoid the requirement of tracking second nearest neighbours or recursion in the implementation,
F′α is first computed and stored for all atoms in a single pass then Eq. (3.11) is evaluated for
each atom. This affords an approximate 20 times speed-up over the naïve implementation by
eliminating repeated calculations of ρα for shared neighbours.

3.2 Cell methods
A naïve approach to computing the forces on all atoms with Eq. (3.11) requires O

(
n3)

calculations, this can be vastly accelerated by exploiting the local nature of the potential. If
the neighbours within the cut-off radius rcut of each atom are known then, the sum over α in
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Index 0 1 2 3 4 5 6 7 8 9

HEAD 8 9 · · ·

LIST n 0 n 2 3 4 1 6 5 7 · · ·

Fig. 3.2 A graphical representation of the LCL data structure. For a simulation with M cells and n atoms
HEAD is a length M array and LIST is a length n array. Here cell C2, corresponding to HEAD[2], contains
atoms indexed 7,6,1 and 0. Following the C-style 0-based array indexing; n is the end of array sentinel,
indicating no more atoms in a cell.

Eq. (3.11) only needs run over neighbours of γ and the sum to calculate ρα needs only run over
the neighbours of α. Thus, assuming an approximately uniform atom density such that each
atom has np neighbours, the number of calculations is reduced to O

(
n · n2

p

)
.

The cost of finding the neighbours of all the atoms, when taking the simple approach of
comparing all the atomic separations, scales as O

(
n2) . This is undesirable as the goal is to

match the complexity of evaluating the force. Fortunately, by binning the atoms into small cells,
with edge length L = rcut, we only need to investigate the atoms in adjacent cells. This reduces
the complexity of finding the neighbours of all atoms to O

(
n · 33nc

)
with nc the average number

of atoms per cell.
The cell size can be smaller than rcut but this requires iterating over more cells to find

all neighbours. Figure 3.1 highlights the relationship between cell size and cells required to
search. With a uniform atom density, the number of cells to iterate over scales as O

(
rcut
L

3
)
.

For L = rcut we expect only 16% of tested atoms to fall within the cut-off radius. For a ratio
of 2L = rcut this improves to 27% but requires 4.5× more cells to be inspected, this process
could be continued until each cell holds only one atom but the cost of iterating over all the cell
becomes prohibitive. Based on the empirical results of Welling and Germano [83], we choose
the simplest ratio L = rcut which performed well in all their testing. Finally, we consider using
a projection sorting method [33] between adjacent cells, which has been shown to increase the
probability of a tested atom being a neighbour to 59%. However, due to the complexity and
overhead required, we choose not to use this method.
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3.2.1 Linked cell list

Algorithm 3.1 Linked cell list construction.

procedure MakeCellList(HEAD,LIST)
Assuming a periodic simulation box with side lengths 0 to Li in the ith axis.
HEAD[0,1, . . . ,M − 1]← n ◃ Fill with sentinels
for α← 0,1, . . . ,n − 1 do

i ← int(rαx · mx/Lx) ◃ Rounds toward zero
j ← int(rαy · my/Ly)
k ← int(rαz · mz/Lz)
λ← Λ(i, j, k) ◃ Section 3.2.2; λ ∈ {0,1, . . . ,M − 1}
LIST[α]← HEAD[Λ] ◃ Possibly another atom in Cλ
HEAD[Λ]← α

An efficient data structure for storing the atoms in each cell is a linked cell list (LCL) [3,
p. 151] consisting of two arrays HEAD and LIST of length M = mx · my · mz and n respectively,
with mx , my, mz the number of cells along the x, y, z axis, respectively. Each element of array
HEAD represents a cell Ci with i ∈ {0,1, . . . ,M − 1} and contains the index α of an atom in Ci.
Additionally, LIST[α] holds the index of the next atom in Ci. This structure is represented
graphically in Fig. 3.2. The LCL can be constructed rapidly in O (n) time using Algorithm 3.1
and the atoms in a cell can be retrieved using Algorithm 3.2.

If the use of O(M) memory is too high then the array HEAD could be replaced with a hash
table. This would reduce the memory required to O(n) at the cost of evaluating a hash function
at each random access. Because there should be multiple atoms per cell we anticipate M < n

therefore, O(M) arrays are preferred.

3.2.2 Cell indexing
A key requirement of the LCL algorithms described is a method for mapping the three-tuple
coordinate to an integer cell index: R3 7→ N3 7→ N. The first transformation can be achieved
trivially through a float→ int truncating cast. The second transformation, which we shall
name Λ : N3 → N, must be injective and ideally surjective onto the set {0,1, . . . ,M − 1} such
that we minimise the memory required for HEAD. The simplest choice for Λ is the trivial bijection
used for array indexing in many computing languages:

Λ(i, j, k) = i + mx · j + mxmy · k (3.12)
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Algorithm 3.2 Find indexes of all atoms in a cell.

function FindInCell(HEAD,LIST, i, j, k)
ATMS← []
α← HEAD[Λ(i, j, k)] ◃ Section 3.2.2.
loop

if α = n then
return ATMS

else
Append atom α to ATMS

α← LIST[α]

which is very fast to evaluate but has poor locality (i.e points close in 3-space mapping to points
close in 1-space; Eq. (3.12) preserves locality only in i). The locality preserving property
of Λ is advantageous as we periodically sort the atoms by their Λ ordering—as Λ maps to
natural numbers we can use an integer sorting algorithm to achieve O(n) complexity, see
Section A.2—this enhancement is named the linked cell reordering [53] (LCR) method. LCR
accelerates performance by reducing cache misses in three ways:

1. When constructing the LCL memory read/writes to HEAD will be sequential (with gaps).

2. When accessing atoms in the same cell they will be continuous in memory.

3. When accessing neighbours in adjacent cells, if Λ is strongly locality preserving, they are
more likely to be close in memory to the initial cell atoms.

Better choices for Λ could therefore be the space filling, Hilbert [40] or Z-order/Morton [60]
curves. The Hilbert curve in particular has been suggested [4, 83] as a good candidate for
its strong locality preserving properties [58] and ability to sort into Hilbert-order without
computing Hilbert-indices [41]. Using these curves for Λ for both cell indexing and ordering
would be beneficial (albeit take longer per Λ evaluation) however, the recursive definitions of
both curves puts a power of two constraint on the number of cells in each axis. Using a space
filling curve for the atom ordering and Eq. (3.12) for the indexing would reduce cache misses
via mechanism 3 above but weaken 1 and 2 to ‘approximately’ sequential and ‘approximately’
continuous, respectively. Preliminary testing of using Hilbert indexing for Λ showed the
overhead of computing the Hilbert indices and the relaxing of points 1 and 2 outweighed
optimisation 3 compared to using Eq. (3.12).
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3.2.3 Boundary conditions
We must introduce cyclic boundary conditions into the simulation cell. This can be done on a
per-norm calculation level but requires the introduction of conditionals or modulo operations
into each norm calculation. This is expensive (conditionals preventing vectorisation) and
wasteful as most atom pairs need no boundary corrections. Alternatively, corrections can be
pre-computed at the cell level with correction vectors qi j for each cell pair (Ci,Cj) such that:

rαβ =
r β − rα − qi j

 (3.13)

with r β, rα in cells Ci, Cj respectively. This only require three extra floating-point additions per
calculation but requires an additional O(M2)memory to store the correction vectors. Finally, as
described by Rapaport [77, p. 18], a set of ghost atoms can be introduced outside the simulation
cell by copying the atoms within rc of a face to the outside of the opposite face. The forces on
the atoms inside the cell can then be computed without application of boundary conditions thus,
eliminating all branching. This requires O(n 2

3 ) extra work and space to find/copy and store
the ghost atoms but completely removes any additional per-norm overhead. As n grows this
cost will become negligible (compared to the force calculation itself) therefore, we choose this
method for including cyclic boundary conditions.

3.3 L-BFGS method
As a subroutine for later algorithms we shall require a fast and robust general optimiser. The
limited-memory formulation of the Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm
is such an optimiser for solving the problem:

min U(x) with U : RN → R

Where the function U has associated gradient g = ∇U and Hessian (H)i j =
δ2U
δxiδxj

. It has been
shown to produce superlinear convergence for similar problems [45]. We detail the algorithm
here in order fully understand how it can be best applied to our problem.

The Newton step towards a local minima (assuming H positive definite) is then [63, p. 22]:

p = −Hg (3.14)
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where we have used the shorthand for the inverse Hessian H = H−1. This would require the
explicit calculation and inversion of the Hessian at each iteration, an expensive set of operations.
The BFGS method approximates the inverse Hessian with knowledge of the curvature obtained
as the algorithm explores the function landscape. Introducing the following notation for the k th

iteration:

sk = xk+1 − xk and yk = gk+1 − gk (3.15)

ρk =
(
yT

k sk

)−1
(3.16)

The BFGS update formula for the k + 1 approximation to the inverse Hessian is then [49]:

H k+1 = (I − ρk sk y
T
k)H k(I − ρk yk s

T
k) + ρk sk s

T
k (3.17)

and the update formula for the position is:

xk+1 = xk − αkH kgk (3.18)

where αk is a step length chosen to satisfy the Wolfe conditions and guarantee convergence.
For details on the Wolfe conditions used see Appendix A.3. Such a step length can be found via
an appropriate line search method (such as that by Moré and Thuente [59]) however, αk = 1
should always be tested for acceptance first as in the quadratic region this leads to superlinear
convergence. The BFGS update step preserves the positive definiteness of H provided yT

k sk > 0
[62], which is satisfied as a corollary of the Wolfie curvature condition Eq. (A.5).

BFGS still requires expensive matrix multiplications and more importantly the storage of
the entire inverse Hessian, requiring O(N2) memory. The L-BFGS method overcomes these
limitations by implicitly storing a modified H , instead caching the previous m values of s, y, ρ
and computing the product in Eq. (3.14) without explicitly forming the inverse Hessian. The
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modified inverse Hessian approximation is [49]:

H k =
(
VT

k−1 . . .V
T
k−m

)
H0

k (Vk−m . . .Vk−1)

+ ρk−m

(
VT

k−1 . . .V
T
k−m+1

)
sk−m s

T
k−m (Vk−m+1 . . .Vk−1)

+ ρk−m+1

(
VT

k−1 . . .V
T
k−m+2

)
sk−m+1s

T
k−m+1 (Vk−m+2 . . .Vk−1)

...

+ ρk−1sk−1s
T
k−1 (3.19)

where:

Vk = I − ρk yk s
T
k (3.20)

which then makes Eq. (3.19) the application of Eq. (3.17) to the m most recent iterations
starting from some estimate of the inverse Hessian, H0

k . There is an efficient algorithm, due
to Nocedal [62], for computing the product Hg in Eq. (3.14) using the inverse Hessian from
Eq. (3.19) called the two-loop recursion detailed in Algorithm 3.3.

Algorithm 3.3 L-BFGS two-loop recursion [62].

function TwoLoop(k,m)
q ← gk

for i ← k − 1, k − 2, . . . , k − m do
Store ai ← ρi s

T
i q

q ← q − ai yi

q ← H0
k q

for i ← k − m, k − m + 1, . . . , k − 1 do
b← ρi y

T
i q

q ← q + (ai − b) si

return q ◃Where q = H kgk .

Choosing H0
k = γk I in Algorithm 3.3 makes for an efficient implementation; the scaling

factor γk used is [49]:

γk =
(
ρk−1y

T
k−1yk−1

)−1
(3.21)
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which helps to ensure the step length ak = 1 satisfies the Wolfe conditions [49]. If there is no
initial information of the Hessian or inverse Hessian then H0

0 = I is typically used. The full
L-BFGS method is specifed in Algorithm 3.4.

Algorithm 3.4 L-BFGS method.

function L_BFGS(x0, m)
k ← 0
repeat

pk ← −H kgk ◃ Algorithm 3.3.
xk+1 ← xk + αk pk ◃Where αk satisfies Wolfe conditions.
if k > m then

Discard sk−m and yk−m

Store sk ← αk pk

Store yk ← gk+1 − gk

k ← k + 1
until converged
return xk

3.4 Dimer method
The original dimer method was developed by Henkelman and Jónsson [37] as a method for
efficiently finding local saddle points in a function of many variables, such as the potential
energy:

U : R3n → R

The dimer method is a minimum-mode following method, originally described by Cerjan and
Miller [14], that climbs the potential energy surface (PES) from a local minima to an adjacent
saddle point. The dimer method is superior to earlier methods as it avoids computing the full
Hessian matrix. This avoids expensive matrix operation that scale as O(n3) as well as only
requiring the first derivatives of the potential energy. We shall follow the formulation of the
dimer method presented by Kästner and Sherwood [45] which contains several optimisations
over the original method.

The dimer method manipulates two images of the system R1 and R2 separated by a small
distance 2∆R along the unit vector N̂ in 3n dimensional space, with n the number of atoms in
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R0

R1

R2
g0

g1

g2

∆R

N̂

Fig. 3.3 Definition of the dimer images, Rx , in 3n dimensional space and the corresponding potential
gradients at each image, gx .

the system. This pair of images are referred to as “the dimer" and represented in Fig. 3.3. At
Rx the gradient of the potential energy is denoted gx and the potential energy Ex . The dimer
midpoint is denoted R0 and related as:

R1 = R0 + ∆RN̂ (3.22)

R2 = R0 − ∆RN̂ (3.23)

The curvature, C, of the potential along the dimer is calculated with the quadratic finite
difference formula:

CN = N̂THN̂ ≈ (g1 − g2)T N̂
2∆R

≈ E1 + E2 − 2E0

∆R2 ≈ E − 2E0

∆R2 (3.24)

where E = E1 + E2 is the dimer energy. The gradient g2 can be linearly interpolated:

g2 ≈ 2g0 − g1 (3.25)

this allows the reuse of g0 as the dimer rotates, saving a gradient evaluation per rotation, but the
accuracy of the curvature approximation goes from O(∆R2) to O(∆R):

CN ≈ (g1 − g0)T N̂
∆R

(3.26)

The saddle point search has two steps: rotation of the dimer to align it with the minimum
curvature mode of the Hessian and translation of the dimer along the PES in towards a local



3.4 Dimer method 25

R0
∆RN̂

Θ̂1

R1

Θ̂∗1
R∗1

Θ̂∗∗1 R∗∗1

θ1

θmin

Fig. 3.4 Definition of the dimer images during a rotation in 3n dimensional space, all vectors are in the
plane of the paper/rotation. The image at R2 has been omitted from this figure for clarity.

saddle point. The former is described in Section 3.4.1 and the latter in Section 3.4.2, a single
iteration of the dimer method is an application of both of these steps.

3.4.1 Rotation of the dimer
Rotation plane

As the midpoint of the dimer remains fixed during a rotation we see from Eq. (3.24) that
minimising the dimer energy is equivalent to minimising the curvature along the dimer. This
assumes a sufficiently small ∆R such that the potential varies quadratically, therefore Eq. (3.24)
holds. Let the plane of rotation be spanned by N̂ and a unit vector Θ̂. The steepest ascent
direction for rotation of the dimer maximises ∂E

∂θ

��
θ=0 hence, expanding the partial derivative:

∂E
∂θ
=
∂E1
∂θ
+
∂E2
∂θ
= gT

1
∂R1
∂θ
+ gT

2
∂R2
∂θ

(3.27)

and applying:

R1 = R0 + ∆R
(
N̂ cos θ + Θ̂ sin θ

)
(3.28)

R2 = R0 − ∆R
(
N̂ cos θ + Θ̂ sin θ

)
(3.29)
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we see:

∂E
∂θ
= ∆R (g1 − g2)T

(
−N̂ sin θ + Θ̂ cos θ

)
(3.30)

∂E
∂θ

����
θ=0
= ∆R (g1 − g2)T Θ̂ (3.31)

hence the optimal direction for steepest descent is parallel to − (g1 − g2) and the rotation plane
of steepest descent is spanned by (g1 − g2) and N̂ . To preserve orthogonality to N̂ we choose
Θ̂ parallel to the applied rotational force:

Fr = − (g1 − g2) +
[(g1 − g2)T N̂

]
N̂

≈ −2 (g1 − g0) + 2
[(g1 − g0)T N̂

]
N̂ (3.32)

where we have used the linear interpolation Eq. (3.25). Finally, normalising Θ̂ = Fr/∥Fr ∥.
This specifies the plane of rotation of steepest descent with a pair orthonormal vectors and is
visualised in Fig. 3.4.

As an enhancement to the rotation algorithm, instead of choosing Θ̂ in the plane of steepest
descent we use the L-BFGS method to select the plane of rotation; see Section 3.3 for a full
description of the L-BFGS method. The dimer axis, N̂ , is used as the coordinate input to
L-BFGS whilst the associated gradient is g1 − g2 ∝∼ g1 − g0. The L-BFGS descent direction is
then orthonormalised to the dimer axis to find Θ̂. The L-BFGS history is reset after each dimer
translation and we start from the unit Hessian.

Rotation angle

To determine the value of θ = θmin that minimises the curvature in the plane of rotation we
expand the curvature along x = N̂ cos θ + Θ̂ sin θ, a unit vector in the plane of rotation:

Cx = xTHx

= N̂THN̂ cos2 θ + (N̂THΘ̂ + N̂THΘ̂) sin θ cos θ + Θ̂THΘ̂ sin2 θ

= cos2 θ
∑

i

λi

(
N̂Tui

)2
+ 2 sin θ cos θ

∑
i

λi

(
N̂Tui

) (
Θ̂Tui

)
+ sin2 θ

∑
i

λi

(
Θ̂Tui

)2

=
a0
2
+ a1 cos(2θ) + b1 sin(2θ) (3.33)
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therefore:

∂Cx

∂θ
= −2a1 sin(2θ) + 2b1 cos(2θ) (3.34)

where we have expanded the Hessian in terms of its eigenvectors, ui, and corresponding
eigenvalues, λi, through the eigendecomposition relation for real symmetric matrices [11, p. 80]:

H =
∑

i

λiuiu
T
i (3.35)

θmin then satisfies:

∂Cx

∂θ

����
θ=θmin

= 0 (3.36)

therefore:

θmin =
1
2

arctan
(

b1
a1

)
(3.37)

This may be a minimum or maximum of the curvature and can be checked via substitution back
into Eq. (3.33), if it is a maximum (i.e the curvature increases) then π2 is added to θmin to bring
us to a minimum. This π2 offset is due to the π periodicity of Eq. (3.33).

To approximate a1 and b1 we differentiate Eq. (3.24) with respect to θ and substitute in
Eq. (3.30):

∂Cx

∂θ
≈

2 (g1 − g0)T
(
−N̂ sin θ + Θ̂ cos θ

)
∆R

(3.38)

where we have used the linear interpolation Eq. (3.25). Evaluating Eq. (3.38) and Eq. (3.34) at
θ = 0 we obtain:

b1 =
1
2
∂Cx

∂θ

����
θ=0
≈ (g1 − g0)T Θ̂

∆R
(3.39)

Finally after rotating the dimer through a trial angle θ1 and substituting into Eq. (3.33):

a1 =
Cx |θ=0 − Cx |θ=θ1 + b1 sin(2θ1)

1 − cos(2θ1) (3.40)
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where Cx |θ=0 = CN and Cx |θ=θ1 is computed using the new dimer axis, N̂ ∗, and gradient at the
new dimer end point, g∗1, see Fig. 3.4 for definitions.

An estimate for θmin can be obtained without a trial rotation of the dimer (avoiding a gradient
calculation at g∗1) by approximating the second derivative of the curvature along the dimer
axis [39], this estimate should be used as the trial angle:

θ1 = −1
2

arctan
(

b1
|Cx |θ=0 |

)
(3.41)

Should either |θmin | or |θ1 | be less than a specified θtol then the rotation is considered converged
and no further rotation is carried out.

After the dimer has been rotated by θmin, the gradient of the potential at the new end point
g∗∗1 must be calculated as it becomes g1 in the next iteration. However, R0, R1 and R∗1 are
coplanar therefore, we can linearly interpolate between them to obtain g∗∗1 with one less gradient
calculation [45]:

g∗∗1 =
sin(θ1 − θmin)

sin θ1
g1 +

sin θmin
sin θ1

g∗1 +
(
1 − cos θmin − sin(θmin) tan

(
θ1
2

))
g0 (3.42)

The dimer rotation procedure is summarised in Algorithm 3.5. We set a limit on the number
of dimer rotations per iteration (IR

max = 15 unless otherwise specified), after which the rotation
is considered sufficiently converged. This allows us to use a very small θtol that is only fully
resolved during the latter part of the dimer translation whilst converging onto the saddle point.
During the initial translation exact rotational convergence is not required, here small errors in
the translation force’s direction are handled by the L-BFGS optimiser.

3.4.2 Translation of the dimer
After rotation of the dimer to align with the minimum mode the modified translational force
acting on the dimer is defined as:

Ft = −g0 + 2N̂ gT
0N̂ (3.43)

This is the net translational force acting on the dimer with the component parallel to the dimer
axis (ideally aligned with the minimum mode) reversed. Translating along this force maximises
the dimer energy along the minimum mode and minimises the energy along all other modes.
Therefore, assuming appropriate rotational convergence at each step, translating along Ft

converges to a local saddle point [45].



3.4 Dimer method 29

Algorithm 3.5 Rotation procedure to align the dimer axis with the minimum mode.

procedure RotateDimer(R0, g0, N̂ ) ◃ Orients N̂ along the minimum mode.
g1 ← ∇U(R0 + ∆RN̂ )
for k ← 1,2, . . . , IR

max do
Calculate Θ̂(g0, g1, N̂ ) using L-BFGS ◃ Section 3.3.
b1 ← b1(g0, g1, Θ̂) ◃ Equation (3.39).
Cx |θ=0 ← CN (g0, g1, N̂ ) ◃ Equation (3.26).
θ1 ← θ1 (b1, Cx |θ=0) ◃ Equation (3.41).
if |θ1 | < θtol then

return
else

N̂∗ ← N̂ cos θ1 + Θ̂ sin θ1 ◃ Trial rotation.
g∗1 ← ∇U(R0 + ∆RN̂ ∗)
Cx |θ=θ1 ← CN (g0, g

∗
1, N̂

∗) ◃ Equation (3.26).
a1 ← a1(Cx |θ=0 , Cx |θ=θ1 , b1, θ1) ◃ Equation (3.40).
θmin ← θmin(a1, b1) ◃ Equation (3.37).
if Cx |θ=θmin > Cx |θ=0 then ◃ Equation (3.33).
θmin ← θmin +

π
2

N̂ ← N̂ cos θmin + Θ̂ sin θmin ◃ Optimal rotation.
g1 ← g∗∗1 (θ1, θmin, g0, g1, g

∗
1) ◃ Equation (3.42).

if |θmin | < θtol then
return

Diverging from the formulation of Kästner and Sherwood [45] we treat the dimer translation
differently in the convex regions of the potential energy, where all modes have positive curvature
and nonconvex regions, where at least one mode has negative curvature. This is determined
from the sign of the minimum curvature mode, as computed during the dimer rotation. The
local minima reside in convex regions whilst the saddle points in nonconvex regions.

In the nonconvex regions, similar to the dimer rotation, we use the L-BFGS algorithm for
determining the translation direction and step size. No line search was used for determining
the step size in the L-FBGS algorithm as no effective potential of Ft can be formed (necessary
to evaluate the Wolfe sufficient decrease condition Eq. (A.4)), instead the αk = 1 parameter
is used with a scaled unit Hessian and a maximum step size, strust. This additionally saves
energy/gradient calculations that would be required during a line search. The dimer is considered
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converged when ∥Ft ∥ is below Ftol. The maximum step size is scaled according to the success
of the previous steps; the projection of the effective gradient on the search direction is calculated
after a step:

P = −FT
t p (3.44)

where p is the approximate Newton step, computed using the L-BFGS method. An ideal step
length would have P = 0, while an oversized step results in P > 0 and an undersized step
P < 0. Consequently, we increase the the maximum step size by some multiplayer m when
P < −Ptol and divide by m when P > Ptol. Typically, we choose m = 2 and bound strust such
that smin < strust < smax. An attempt was made to introduce a line search that satisfied the
Wolfie curvature condition Eq. (A.5) (which does not require the effective potential) however,
this required alignment of the dimer axis at every trial step-length which requires additional
gradient calculations and did not significantly accelerate convergence.

It is not suitable to use the L-BFGS method without a line search in the convex regions of
the potential as, while the dimer climbs out of the convex minima, the product sT

k yk frequently
becomes negative. This no longer guarantees positive definiteness of the inverse Hessian which
can result in the L-BFGS method producing non-descent directions; this causes the dimer
to converge back to the starting minima for most trials. The connection between sT

k yk and
minima/saddle-points of the potential U becomes clearer if we define Heff the Hessian of the
effective potential of Eq. (3.43), denoted Ueff. Then for sufficiently small steps:

sT
k yk = (xk+1 − xk)T

(
∇Ueff

k+1 − ∇Ueff
k

)
≈ (xk+1 − xk)T

((
∇Ueff

k + Heff
k (xk+1 − xk)

)
− ∇Ueff

k

)
≈ (xk+1 − xk)T Heff

k (xk+1 − xk)

≈ pT
kH

eff
k pk (3.45)

which has the same sign as the curvature of the effective potential along p. We can therefore
conclude in nonconvex regions near saddle points, which are minima of the effective potential
and thus convex regions of Ueff, that sT

k yk > 0 for all small steps. Thus, no line search is
required close to saddle points. This also explains why normally sT

k yk < 0 for small steps near
minima of U, they are nonconvex regions of Ueff (probably concave regions) so some step
directions have negative curvature and as a result sT

k yk is negative.
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Algorithm 3.6 Dimer method, local saddle point search.

function DimerSearch(R0, N̂ ) ◃Move R0 to a local SP and orient N̂ along
the corresponding minimum mode.

strust ← smin

g0 ← ∇U(R0)
RotateDimer(R0, g0, N̂ ) ◃ Algorithm 3.5.
Ft ← Ft(g0, N̂ ) ◃ Equation (3.43).
Escape the convex region following directions PR+ conjugate to Ft ◃ Section 3.4.2
for k ← 1,2, . . . , IT

max do
if ∥Ft ∥ < Ftol then

return Success ◃ Converged to SP.

Calculate descent step p(Ft,R0) using L-BFGS ◃ Section 3.3.
R0 ← R0 +min

(
1, strust
∥ p∥

)
p

g0 ← ∇U(R0)
RotateDimer(R0, g0, N̂ ) ◃ Algorithm 3.5.
Ft ← Ft(g0, N̂ ) ◃ Equation (3.43).
P← −FT

t p ◃ Equation (3.44)
if P > Ptol and strust > smin then

strust ← strust
m ◃ m is a constant multiplier.

else if P < −Ptol and strust < smax then
strust ← mstrust

return Fail ◃ Failed to converge to SP.

To rapidly escape the convex regions of the potential U we begin by translating the
dimer small, fixed, distances along directions PR+ (Polak–Ribière) [30, 73] conjugate to the
translational force, until the dimer is in a nonconvex region.

A single dimer method iteration consists of rotating the dimer to align with the minimum
mode and a single translation, this process is summarised in Algorithm 3.6. We set a limit on
the total number of iterations (IT

max = 200 unless otherwise specified), above which the saddle
point search is considered to have failed.

3.5 Caching saddle-point searches
By far the most time intensive subroutine of the OLKMC method is the SP search procedure
however, most of these SP searches are unnecessary. This is because, due to the local nature
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(a)

rtopo

(b)

⇒ l,[data]

(c)

Fig. 3.5 Summary of the mechanism caching process. In Fig. 3.5a the basin→ basin displacement
vectors of a (hypothetical) mechanism are marked; an H atom (blue dots) bound to a vacancy in the α-Fe
lattice (black dots) migrates to an adjacent site. Fig. 3.5b highlights in red the atoms within rtopo of the
maximally displaced atom. Fig. 3.5c shows the information used to produce the topological key l and
reconstruction data stored in the catalogue.

of the perturbations, most successful SP searches are rediscovering mechanisms (explicitly
the basin→ SP→ basin pathway) that are identical to others in the current time-step, subject
only to a Euclidean transformation. Additionally, there is the potential to reuse saddle-points
discovered at previous time steps or between simulation runs and even refine saddle-points
that are commonly encountered using a higher level of theory (i.e. DFT + nudged elastic band
method [43]).

To reuse previously discovered saddle-points instead of running SP searches we devise the
following generalised method (also sketched in Fig. 3.5) to find and store new saddle points:

1. Beginning with the relaxed set of atoms, A, find a connected SP linking the current basin
to an adjacent basin.

2. Identify the ‘central’ atom ω ∈ A of the mechanism, we choose the atom that undergoes
the largest displacement.

3. Identify the subset of atoms within rtopo of ω: A′ =
{
α ∈ A | ∥rα − rω∥ < rtopo

}
.

4. Produce some discrete label, l, as a function of the positions of the atoms in A′, invariant
under Euclidean transformations, that identifies the local structure around ω.

5. Store in some associative container (called the catalogue) using l as the key: the rate
constant of the reaction, displacement vectors during the mechanism of the atoms α ∈ A′

and any additional information required to reconstruct the mechanism.

Before launching any future SP searches, the label for each atom (as a function of its local
environment) can be calculated and their SP/mechanisms reconstructed from the data stored
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0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 1 1
0 0 1 1 0 0 0 1 0
1 0 1 0 1 0 0 1 0
0 0 0 0 1 1 1 0 1
0 1 0 1 1 0 0 1 0


(d)

Fig. 3.6 Simplified topological classification of the set of atoms identified in Fig. 3.5 using a fixed redge.
The nodes in Fig. 3.6b represent the atoms in Fig. 3.6a, atoms within redge are connected by an edge.
Figure 3.6c is the canonically labelled graph and Fig. 3.6d is the canonical adjacency matrix which,
alongside the colour vector, forms part of the topological label of the geometry.

in the catalogue. This method decouples the perturbation applied to the initial system during
the SP search, from the centre of the resulting mechanism discovered. Furthermore, as the
rate constants are stored in the catalogue the KMC algorithm can be applied first and only the
successful mechanism reconstructed, further accelerating the simulation. Once a mechanism
has been reconstructed from the catalogue the full set of atoms is fully relaxed to account for
any small long-range effects that may accumulate over many MC steps.

A key assumption about the nature of the mechanisms required for the above method to hold
is that all atoms α ∈ A \ A′ displace little or not at all during the transition. This assumption
has practically been observed to hold true for all our tests when using a sufficiently large rtopo,
typically chosen as rtopo = rcut = 6Å.

3.5.1 Topological classification of the local geometry
The non-trivial aspect of the method is the procedure for producing a discrete label from the
local structure around an atom. A balance must be struck between: being too general, thus
mapping distinct local structures with different mechanisms to the same label (a topology
collision) and too intolerant of tiny perturbations in the positions of the atoms in A′ due to
floating-point error and small long-range effects.

To ensure the labelling is invariant under Euclidean transformations it is easiest to construct
a function of invariants rather than a function of the atomic coordinates {rα | α ∈ A′}. The most
natural set of invariants under the Euclidean transformation r 7→ Or + c, with O an orthogonal
matrix, are the set of 1

2n(n − 1) distances between atoms:
{
rαβ =

rα − r β
 | α, β ∈ A′

}
.

Our attempts to define an invariant function, using the full
{
rαβ

}
to construct a discretised

radial distribution failed, as they were too sensitive to small variations in rαβ at the borders
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of radial bins causing them to fall into different bins non-deterministically. To overcome this
problem we choose a second radius redge and define the adjacency matrix:

Gαβ =


1, rαβ ≤ redge

0, otherwise
(3.46)

By choosing redge between the first and second nearest-neighbour distance in the BCC lattice
the topology of the graph defined by G becomes insensitive to small perturbations in the atomic
positions.

The question of determining whether two sets of atoms have the same label now becomes
a question of whether their graphs are isomorphic, a problem in its own complexity class
GI ∈ NP which is not known to be in either P or NP-complete [27]. Fortunately, there exits
graph isomorphism testing algorithms that have polynomial time complexity for most practical
graphs, such as the highly optimised nauty1 library by McKay and Piperno [50].

We assign a colour to each atom and use nauty to produce a canonical labelling of the
atoms in A′ and the canonised adjacency matrix CG, stored in a compacted bit field. This
labelling process is represented graphically in Fig. 3.6. The topological label for the graph is
then the pair (CG, kG), where kG is a vector of colours in canonical order. If two pairs compare
equal (all elements compare equal) then the two graphs are isomorphic and we assume the
geometry of the atoms in each set is the same.

Initially we coloured the nodes in the graph according to atomic number of the atoms.
Unfortunately, this method did not incorporate enough information about the local geometry to
prevent topology collisions between complex systems with small atomic displacements, such
as the small displacement of a tetrahedral hydrogen as an adjacent tetrahedral site becomes
occupied. Furthermore, as redge is fixed, atoms near the surface of the (approximate) ball of
atoms making up A′ have fewer neighbours, thus fewer edges in G (as can be seen in Fig. 3.6c
with nodes 0 & 1 having only a single edge) and therefore their geometry is less well specified.
To defeat both these problems we generalise redge allowing it to vary for each atom. Now to
colour each atom α:

1. An initial rαedge is chosen such that no other atoms are within rαedge of α.

2. rαedge ← rαedge + δr , until k atoms are within rαedge of α.

1https://pallini.di.uniroma1.it/

https://pallini.di.uniroma1.it/
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3. Redefine G:

Gαβ =


1, rαβ ≤ rαedge

0, otherwise
(3.47)

4. The colour of the αth node, in the new digraph defined by G, is given by pair (Zα, sα)
with Zα the atomic number and sα =

⌊
c
∑
β Gβαrαβ

⌋
.

This procedure encodes much more of the information within
{
rαβ

}
into the digraph, dramatically

reducing the possibility of topology collisions without any modifications required to the graph
canonization/labelling. Typically, k is set to the number of spatial dimensions in the simulation
and c is a fraction of the smallest atomic separation.

The use of Gβα instead of Gαβ when calculating sα is significant as often mechanism in the
Fe-H system will involve symmetric rearrangements of an H atom, this only significantly alters
rαβ for atoms directly connected to the H atom. If Gαβ was used then these changes would only
be visible in shydrogen and can be lost during the summation. This is avoided by summing over
Gβα, which distributes the information of a single H atom moving onto all its neighbours.

The validity of the topological classification depends on the existence of a one-to-one
correspondence between topologies and geometries. Choosing a larger rtopo or k reduces the
probability of a topology collision. During the simulation, in order to constantly validate the
existence of the one-to-one correspondence, we store a second catalogue associating topological
keys to a reference geometry. Every time a topology is re-encountered the geometry of the
atoms are confirmed to match the stored reference. If a match fails then k is dynamically
adjusted until the topologies are distinguishable.

All topological catalogues are written to a file on disc at the end of each simulation. This
enables the implementation to ‘learn’ between runs, as a complete catalogue of events that can
occur in each system is slowly built. This catalogue file can also be shared between computers,
to bypass the learning phase at the beginning of simple systems.

3.5.2 Mechanism reconstruction
To reconstruct a mechanism for the set of atoms B′, from a mechanism found at a set of atoms
B that has the same topological label, we define an orthonormal basis sets in B′ and B:

1. Order the atoms into their canonical orders using nauty.

2. Taking the first atom as the origin and the second atom as the direction of the first basis
vector e1 = r1 − r0.
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3. Taking the next atom α noncollinear to atoms 0,1 as the direction of the second basis
vector e2 = rα − r0.

4. Choosing the next atom β noncoplanar to atoms 0,1, α as the final basis vector e3 = r β−r0.

5. Orthonormalizing e1, e2, e3 using the Gram–Schmidt process [5, p. 516].

The orthogonal transformation matrices L′ and L are then constructed using the basis vectors
as columns, e.g. Li j =

(
e j )

i. The displacement of the αth atom in B′ is then computed from the
stored displacement vector δrα in B as:

δr′α = L′LTδrα (3.48)

To avoid having to store L in the catalogue in our implementation we store
{
LTδrα | α ∈ B

}
directly.

As an additional check that no topological collisions or reconstruction failures have occurred
we store in the catalogue of mechanisms the total energy change of the system during the
mechanism. If the energy change after the reconstruction is too different or the reconstructed
basin is too far from a true minima the reconstruction is considered to have failed. In this case
rtopo and/or k can be adjusted.

3.6 The low barrier problem
A common issue encountered during KMC simulations is the so called, low barrier problem [52,
81], which occurs when a collection of basins are connected by a series of low energy barriers.
This collection of basins – often called a superbasin – takes many MC steps to escape from.
During this period the simulation clock advances very little as internal transition are very
fast. Numerous solutions have been proposed including, exact analytical treatments of the
superbasins [74, 24, 8] that compute the mean superbasin escape times as well as simpler
TABU-like [32] methods that ban recent transitions [52, 15].

We initially tested the TABU-like method as maintaining a memory kernel of the n most
recent events is far less overhead than the matrix inversions required for the analytical solutions.
We modify the rate constants according to:

Γi j ←


0 if i → j in the memory kernel

ΓTST
i j otherwise

(3.49)
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which has been shown to be thermodynamically sound providing n ≪ the total number of MC
steps [15]. However, during testing of the vacancy-hydrogen complex diffusion (see Section 5.3)
this method produced large biases in the results. Therefore, we resolved to implement the full
analytical superbasin solution.

3.6.1 Superbasin accelerated off-lattice kinetic Monte Carlo
To overcome the low-barrier we begin by following Puchala, Falk, and Garikipati’s [74] mean
rate method, the system is divided into two the sets of states: those states inside the current
superbasin called the transient states and absorbing states outside the superbasin. As we
cannot know which states are transient or absorbing before the simulation begins (or even
what the states are), we must make this distinction as they are discovered. We define the
two states to be part of the same superbasin if there exists a low-barrier mechanism linking
them. A low-barrier mechanism is one with forward and reverse energy-barriers below some
energy threshold, e.g. E‡ − E i < E tol and E‡ − E f < E tol. Unfortunately, partitioning the
states into transient/absorbing using this definition would require exploring all states inside
a superbasin in order to apply the mean rate method, which could become unnecessarily
expensive. This is because each new state may require a full set of SP searches to identify
its set of mechanisms. Furthermore, just entering each state during the exploration requires
reconstructing each mechanism from the catalogue.

The heart of the problem lies in the mean rate method focusing on differentiating states,
while the fundamental object in OLKMC are mechanisms. Therefore, we change the frame
of reference in the mean rate method such that we do not require knowledge of the absorbing
states, by further partition the mechanisms into transient and absorbing categories. We denote a
rate constant connecting states i → j via a transient mechanism as Γ∗i j , whilst the rate constant
for an equivalent absorbing mechanism remains Γi j .

Beginning from an empty set we append a basin object, which includes the current state
of the system as well as the set of mechanisms leaving the state. As the state of the system
after any of these mechanisms occurs is currently unknown, they are all marked as absorbing
mechanisms. This set of basins is the superbasin and will be constructed on-the-fly.

First, the traditional KMC algorithm is used to select a mechanism and move/jump the
system into a new state, s. If the selected mechanism is a high-barrier mechanism, then the
superbasin is cleared and the process resets. However, if it was a low-barrier mechanism then it
is marked as a transient mechanism and a new basin (constructed from s) is appended to the



3.6 The low barrier problem 38

superbasin. The transient transition probability matrix, T , is then formed:

Tji =
Γ∗i j∑

j Γ
∗
i j +

∑
k Γik

= τ1
i Γ
∗
i j (3.50)

where the indices i, j run over the states in the superbasin (these are the transient states), the
index k runs over all absorbing mechanism leaving state i and τ1

i is the mean residence time in
state i each time it is occupied. This describes the total probability of moving from a transient
state to another transient state via a transient mechanism.

Now we introduce the transient occupation probability vector, Om, which encodes the
probability of being in each transient state after m transient jumps and before jump m + 1.
Hence, with the system in transient state s, (O0)i = δis. Using the relationship Om = T

mO0, the
total number of times a transient state is visited before a jump via an absorbing mechanism
occurs is:

OTot =
∞∑

m=0
Om =

∞∑
m=0

TmO0 =

( ∞∑
m=0

Tm

)
O0

solving the Neumann series, similar to the mean rate method [74]:

OTot = (I −T )−1 O0 (3.51)

The mean total-time spent in each transient state is therefore τi = τ1
i OTot

i . We can now compute
the mean rate of exiting from transient state i to some state l via an absorbing mechanism:

⟨Γil⟩ = τi∑
j τj
Γil (3.52)

Finally, we use the KMC algorithm on this set of absorbing mean-rates to select the next
mechanism and jump to the new state. Several possibilities now exist: if the chosen mechanism
leads to a transient state then it is marked as a transient mechanism, T is recalculated and the
process repeats. Else, if the mechanism was a low-barrier mechanism it is marked as a transient
mechanism, a new basin object is constructed and appended to the superbasin, T is recalculated
and the process repeats. Otherwise, the mechanism was a high-barrier mechanism therefore,
the superbasin is cleared and the process resets.

This method reduces to the mean rate method if the simulation explores every internal
mechanism inside a superbasin but may not require exploring the entire superbasin. Additionally,
three further optimisations are implemented:
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• Upon entering a new superbasin state for the first time all exiting mechanism will be
absorbing mechanisms, this will reduce: OTot = O0, hence ⟨Γil⟩ = δisΓil and the matrix
inversion can be skipped.

• When resting the method, instead of discarding the superbasin it is cached into a circular
buffer. Following a future high-barrier absorbing mechanism the superbasin can be
reloaded from this cache if it has been encountered before. This is particularly critical
as it avoids re-exploring a superbasin that is re-entered immediately after it has been
escaped.

• If the superbasin grows beyond some maximum size then the algorithm reverts to standard
KMC, this prevents overfilling the memory of the host computer and slowdowns as the
matrix inversions scales polynomially with the number of basins in the superbasin. The
maximum size must be set larger than the number of states in the superbasin of interest
e.g. 6 states in a vacancy-hydrogen complex.



Chapter 4

Validation

This chapter focuses on verifying our implementations of the numerical methods discussed
in Chapter 3. Section 4.1.1 tests the saddle-point search algorithm in a well-studied 2D
potential and explores an alternative translational force. Section 4.1.2 combines our EAM force
implementation with the dimer SP search to interrogate a simple and relevant system, a vacancy
in the α-Fe lattice. Finally, in Section 4.2 we combine the kinetic Monte Carlo algorithm and
topological caching into the model and we verify the kinetic results using a asingle hydrogen
atom diffusing in the perfect lattice as a simplest test model.

4.1 Dimer method

4.1.1 Two-dimensional model potential
A simple two-dimensional model potential was the first test for the dimer-method implementation
as it provides easy visualisation and rapid testing. The model chosen was a London–Eyring–
Polany–Sat (LEPS) potential [72] between three collinear atoms coupled to a harmonic oscillator,
the analytical form is detailed by Jónsson, Mills, and Jacobsen [43]. Additionally, the Gaussian
modifications made by Henkelman and Jónsson [37] are included to increase the number of
saddle points, this potential has been used in previous studies to investigate the effectiveness of
saddle point search algorithms [37, 86, 21]. Key features of the potential include four saddle
points and two local maxima surrounding the initial basin (all highlighted in Fig. 4.1), centred
at (0.77,−0.07). The slowest ascent direction, towards − ŷ, does not lead to a saddle point and
there are no saddle points in the −x̂ direction

(
lim∥r ∥→∞ULEPS (r) → ∞)

.
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Fig. 4.1 Dimer search trajectories in a two-dimensional LEPS potential coupled to an harmonic
oscillator [43]. The dimers are initialised with random Gaussian distributed positions centred on the
basin at (0.77,−0.07), with a standard deviation of 0.1Å along each axis. The dimer axes are marked
with black bars and should be aligned with the minimum curvature mode at the location of the dimer.
The dimer separations are too small to resolve. Dimers 1, 2 and 3 converge to saddle points in 14, 17 and
15 iterations respectively. Dimer 4 moves to x ≈ −4Å before the search is aborted due to not finding a
nonconvex region within 50 iterations. Dimer 5 follows the softest mode aligned with the y-axis until it
reaches y ≈ −10Å then, realigns with the x-axis aligned mode and returns to a saddle point.

Dimer searches were carried out starting the system from the initial basin with small
Gaussian displacements along each coordinate. In total ten dimer searches were conducted,
trajectories for five of the dimer searches are displayed in Fig. 4.1.

Dimers 1, 2 and 3 rapidly converge to saddle points connected to the initial basin. A sharp
change of direction in dimer path 2 is noticeable, this is the point the dimer switches from the
conjugate gradient method in the convex region to the L-BFGS method in the nonconvex region.
Upon switching the L-BFGS algorithm has no knowledge of the history of the path so initially
follows the steepest descent direction and thus the change in direction.

None of the dimer searches converged to the upper right saddle point located at (1.51,2.60),
any dimers moving in this direction are instead attracted to the lower energy saddle at (1.93,0.88).
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This behaviour is observed in previous works [37], thus is not an implementation issue. Rather,
this is a systematic exclusion by the dimer method, that can only be overcome with larger initial
displacements or biasing the dimer away from previously discovered saddle points. However,
the former can increase the chance of finding disconnected saddle points (which could be
mitigated at a higher computational cost with the κ-dimer method [86]) and the latter could still
exclude saddle points ‘shielded’ by saddle points closer to the initial basin. Fortunately, the
saddle point excluded is on the highest energy pathway out of the basin as well as being on a
very curved reaction pathway. This means the rate constant along this pathway is likely to be
extremely low and excluding it should not have too large an effect on the KMC simulation.

Three of the dimer searches did not converge to a saddle point. Instead, like dimer 4 in
Fig. 4.1, they move in the −x̂ direction where there are no saddle points until some iteration
limit. To mitigate this effect the alternative translational force [37]:

Ft = N̂ gT
0N̂ (4.1)

was investigated in the convex region. This resulted in far fewer non-converging dimers but
severely biased the dimer search to the saddle points at (0.66,2.04) and (1.87,−1.29). This is
because the minimum mode near the centre of the basin is oriented along the y-axis, resulting in
many dimers initially moving along the ± ŷ directions. This can be avoided by orthogonalising
successive dimer-search axes but, this comes with additional computational costs and reverts to
the initial problem of searching in directions with no saddle points. The decision was made not
to use the modified translational force due to this bias.

4.1.2 Vacancies in α-Fe
The first 3-dimensional test for the dimer method implementation was a simple α–Fe lattice
using a cubic supercell of 685 atoms, containing a single vacancy, under full periodic boundary
conditions. Two EAM potentials (denoted A & B) of the form described in Section 3.1
were investigated, the full analytical functions are given by Ramasubramaniam, Itakura, and
Carter [75]. Gaussian displacements along each coordinate axis for each atom close to the
vacancy were made and a saddle-point search carried out; the maximum translational step size
was smax = 0.5Å. Providing the SP search converged the system was then displaced ±0.1Å
along the dimer axis and the total systems energy minimised. If one of the final positions was
sufficiently close to the initial position/minima the SP was considered connected and the SP
search successful. The norm of the 3n-dimensional force/effective-force was converged to
10−5eV Å−1 and the dimer axis converged to within 1° of the minimum mode. The program
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Fig. 4.2 Histogram of the occurrence count of each mechanism found during 5000 iterations of SP
searches classified by their activation energy, ∆E1. Potential A successfully converged to 2534 connected
saddles whilst potential B converged to 1976. The amplitude of the Gaussian displacements was 0.3Å.
The mechanisms with activation energies (potential A) of 0.53, 1.06 and 2.34Å are sketched in Fig. 4.3.
In total 43 mechanisms were found with unique activation energies.

carried out SP searches until successful, the mechanism found was then carried out (regardless
of the energy barrier) and the process repeated. This method was chosen in the hope of
discovering the maximum variety of mechanisms.

Two energies were recorded for each transition, the activation energy, ∆E1, equal to the
energy change between the SP and the initial state and, ∆E2, the energy change between the
final relaxed state and the SP. Figure 4.2 displays a histogram of the activation energies found
during 5000 iterations for both potentials. The mechanism found can be summarised into four
groups, correspondingly sketched in Fig. 4.3:

• A vacancy corner atom (A) transitioning into a shallow minima on the cusp of moving to
the vacancy centre. This accounts for the two most frequently found mechanisms with
activation energies 0.53, and 0.04eV corresponding to moving into and out-of the shallow
minima, respectively. A pair of these mechanisms constitutes a 1

2 ⟨111⟩ translation of
the vacancy. This pair of transitions collectively account for ≈ 4

5 of the successful SP
searches.
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Fig. 4.3 A selection of the lowest energy mechanisms found for vacancy migration in α–iron using the
dimer method saddle-point search and potential A [75]. ∆E1 is the energy change for the initial→saddle
transition while ∆E2 is the corresponding saddle→final energy change. All the mechanism have a
corresponding reverse mechanism such that ∆E1 ← −∆E2 and ∆E2 ← −∆E1.

• A rarely found ≈ 1eV mechanism, similar to mechanism 1, with two aligned corner atoms
(B & C) simultaneously moving resulting in the vacancy moving two lattice sites i.e a
⟨111⟩ vacancy migration.

• An atom adjacent to a vacancy (D) pushing through the under-coordinated corner atoms
resulting in the ⟨100⟩ vacancy migration. The energy barrier is four times higher than the
1
2 ⟨111⟩ migration explaining why this mechanism is not experimentally observed.

• Finally, a clustering of high energy ≈ 5eV mechanisms, involving several atoms, forming
interstitial Fe atoms or rearrangements of the lattice away from the vacancy.

These mechanisms are in good agreement with the literature [16] and are the most immediately
physically reasonable. Furthermore, the activation energy for vacancy migrations for both
potentials are in good agreement with the experimental range of 0.55–1.3eV [65].
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Fig. 4.4 Histogram of activation energies, ∆E1, found during 500 iterations of SP searches using
potential A for a selection of standard deviations of the initial Gaussian displacements. Coarse binning
(11 bins) has been used to highlight the distribution of energies rather than show each distinct mechanism.
Figure 4.5 presents the corresponding success rate of finding a SP at each standard deviation.

The mechanisms discovered were the same for both potentials however the activation
energy reported for potential B was consistently higher than potential A. This is an unfortunate
discrepancy as it shows there is still disagreement between potentials. We can draw reassurance
however, that the mechanisms describe the same rearrangement of atoms and the relative
activation energies are consistent. Hence with appropriate choices of the Arrhenius prefactor
(see Section 1.2.1 for a detailed discussion) the potentials should produce similar kinetic results.

The large skew in the distribution of mechanism discovery suggests a high number of
SP searches will be required per local arrangement of atoms, in order to build a complete
catalogue of saddle points required for accurate KMC. To investigate the relationship between
the distribution of mechanisms and the amplitude of the initial Gaussian displacements a series
of shorter runs using potential A were performed, the results are presented in Fig. 4.4 and
Fig. 4.5.

From Fig. 4.5 it is clear that the amplitude of the initial displacements has a strong effect
on the success rate of SP searches. Large standard deviations are expected to converge to
disconnected saddle points thus decreasing the success rate, this behaviour is seen in Fig. 4.5
when σ > 0.325Å. However, below σ = 0.25Å the success rate also drops, almost zero at
σ = 0.1Å. This is due to the smaller displacements increasing the probability of starting in a
convex region of the effective potential which then increases the probability of getting stuck in
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Fig. 4.5 Percentage success rate (probability of finding a connected SP) during 500 iterations of SP
searches using potential A for a range of standard deviations, σ, of the initial Gaussian displacements.
Corresponding distributions of activation energies are available in Fig. 4.4.

a soft mode. This is when the dimer axis displaces all atom uniformly in the same direction,
effectively translating the supercell. Due to the periodic boundary conditions this has no effect
on the total energy thus all potential energy derivatives are zero along this axis, including the
second derivatives therefore, the curvature along the minimum mode is zero. This results in the
SP search not converging.

The small peak around σ = 0.325Å in Fig. 4.5 is likely due to previously shielded SP
becoming accessible at the larger displacements. This is supported by Fig. 4.4 when we see
high energy saddle points (∆E1 > 2.5eV), corresponding to forming interstitial Fe atoms away
from the vacancy, only being discovered when σ ≥ 0.3Å.

Figure 4.4 reveals that smaller displacements biases the SP search to finding lower energy
saddle points. The two largest peaks corresponding to the lowest energy mechanisms discovered:
the reverse and forward of mechanism 1 in Fig. 4.3, respectively. We expect lower energy
saddle points to be closer to the initial basin so this behaviour is natural. Consequently, the
solution to picking the best σ is not as simple as choosing the σ that produces the highest SP
success, which for this test seems to be σ = 0.25Å, as this may result in requiring more SP
searches to find the complete set of mechanisms. This is supported by Fig. 4.4 where σ = 0.25Å
finds no mechanisms with ∆E1 > 2.5eV. Conversely picking a σ too high will bias the search
toward, less kinetically relevant, high energy saddle points. This bias has not invalidated the
mechanisms found previously, as a higher σ = 0.3Å was used in Fig. 4.2 and many more SP
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Fig. 4.6 Simulated displacement of a single H atom freely diffusing in the perfect α-Fe lattice, for
a selection of supercell volumes, at 300K and with an Arrhenius pre-factor of 5.12 × 1012Hz. The
simulations typically required 475,000 Monte Carlo steps and approximately 120 hours of total run-time
on a quad-core Intel® Xeon® at 3.10GHz. Plotted for reference is the expectation squared displacement
using the experimental value of diffusivity, D = 7.5×10−9m2 s−1 [35] and the Einstein diffusion equation.

searches were performed. This is evidenced by the large number of high energy mechanism in
Fig. 4.2.

In conclusion, the optimal value of σ is likely to be problem dependant and should be chosen
to minimise the number of SP searches to find all mechanisms of kinetic relevance. A better
method of perturbing the initial atoms may be equidistributed on the surface of a hypersphere [34]
or an adaptive method; first using small displacements to find the most important low energy
mechanisms then large displacements to find the higher energy mechanisms.

4.2 A single hydrogen atom diffusing in the α-Fe lattice
To verify the topological caching, scaling and kinetic behaviour of the model; hydrogen diffusion
in the perfect α-Fe lattice was simulated over a series of supercells. A single H atom was
placed in a 53, 73, 103 and 153 unit-cell supercell, at 300K, with an Arrhenius pre-factor of
5.12 × 1012Hz and allowed to diffuse for 10−7s. The conditions were chosen to replicate those
used by Bombač et al. [12] in their traditional KMC experiment. The results are presented in
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Table 4.1 Summary of the results for the simulation presented in Fig. 4.6.

Supercell size/unit-cells Number of Fe atoms ∆Ea/eV D × 109/m2 s−1

53 250 0.0378 7.9 ± 0.7
73 686 0.0377 7.4 ± 0.6
103 2000 0.0376 8.4 ± 0.7
153 6750 0.0376 7.6 ± 0.7

Fig. 4.6 and Table 4.1; diffusivity, D, in Table 4.1 is computed via the following equation [66]:

D =
1
N

N∑
i=1

R2
i

6∆ti
(4.2)

where the trajectory of the H atom is broken into N time segments ∆ti of approximately equal
length ∆t and R2

i is the squared displacement of the atom in the corresponding time segment.
The resulting diffusivity is weakly dependant on ∆t and is chosen to be as large as possible such
that D converges to the asymptotic limit however, there must be enough samples to reduce the
standard error.

The results for the activation energy of the hydrogen tetrahedral→ tetrahedral transition, ∆Ea

– which quickly converges to 0.0376eV and becomes independent of system size – confirmed the
energy, force and dimer method subroutines scale correctly with the system. Additionally, the
absolute value of 0.0376eV, exactly matches the value measured using the LAMMPS1 software
package [71], as well as being almost identical to the diffusion barrier of 0.039eV [75] reported
by the authors of the potential. This gives a high level of confidence that the energy barriers
reported are correct within the bounds of the underlying potential.

Figure 4.6 demonstrates clear diffusive behaviour over the 10−7s timescale, confirmed by
the fitted diffusivity values, which are all within error of the experimentally measured value of
7.5 × 10−9m2 s−1 [35] and close to replicating the KMC prediction of 8.981 × 10−9m2 s−1 [12].
However, the error in the diffusivity fit is quite high and the diffusivity does not converge
to a constant, as observed by Bombač et al. [12]. This is due to the use of a single H atom,
as opposed to the 5–30 used by Bombač et al., producing poor statistics as we are unable to
average the displacement over multiple H atoms. Furthermore, Bombač et al. do not report the
diffusivity converging to a constant value until simulation times beyond 3 × 10−6s hence, this
non-convergence is expected.

1http://lammps.sandia.gov

http://lammps.sandia.gov
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We can conclude the model and potential reproduce the expected kinetic results and that size
of the supercell, for supercells greater than 53 unit cells, has very little impact on the activation
energy or measured diffusivity. This is to be expected as the presence of the interstitial hydrogen
has only a very small effect on the positions of its neighbouring Fe atoms and the smallest
supercells edge length was still twice the cut of radius (6Å) of the EAM potential. Therefore,
we can safety use smaller supercells to reduce the simulation run time.

Now that we have validated the methodologies and implementation in the simplest environ-
ments, next step is to begin to explore more complex configurations that are out of reach of
traditional KMC methods, as well as continuing to make comparisons when possible to other
experiments and modelling.



Chapter 5

Results & Discussion

In this chapter the complexity of the simulated systems is expanded. During Section 5.1 we
increase the number of hydrogen atoms in the supercell and contrast the results to traditional
KMC methods, as well as exploring the limitations of the underlying EAM potential. In
Section 5.2 we explore the richer set of mechanism discovered through saddle-point searches for
two and three vacancy clusters and the effects they have on the diffusivity of these point defects.
Finally, Section 5.3 combines the progress made in modelling vacancies and hydrogen to study
the diffusion of V-H complexes and comparison to Oriani’s trapping theory [64] are made.

5.1 Multiple hydrogen atoms diffusing in the α-Fe lattice
As an extension of the single hydrogen diffusion experiments in Section 4.2, equivalent runs
were performed in the 73 unit-cell supercell, this time varying the concentration of hydrogen, the
results are presented in Table 5.1. We see the measured diffusivity remains largely independent
of the concentration of hydrogen. This agrees with similar traditional KMC results [12] and is

Table 5.1 Summary of results for multiple H atoms diffusing in the perfect α-Fe lattice as the hydrogen
concentration varies. The simulations required approximately 170 hours of total run-time on a quad-core
Intel® Xeon® at 3.10GHz.

Number of H atoms Concentration/at.% Simulated time/s D × 109/m2 s−1

1 0.15 10−7 7.4 ± 0.7
2 0.29 10−6 8.9 ± 0.4
3 0.44 10−9 6.7 ± 0.9
4 0.58 10−9 8.0 ± 1.1
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expected as, even at its highest, the hydrogen concentration was low enough that the obstruction
to free diffusion should have been minimal. This is confirmed by the average energy barrier
remaining the same as the single hydrogen case.

The larger errors in the measured diffusivity for the 3H and 4H runs are due to a significantly
reduced simulated times for these experiments. This occurred due to an implementation
constraint on the size of the catalogue during the simulation which has since been overcome;
due to time constraints, the decision was made not to rerun the experiments. The increased
number of H atoms of these later runs did partially make up for the reduced run times.

To investigate the distribution of the H atoms, the normalised radial distribution function
(RDF) was calculated according:

g(r) = V
4πttotN(N − 1)r2δr

frames∑
i

∆ti
H atoms∑
α,β
α,β

δ(r − rαβi ) (5.1)

with V the volume of the supercell, N the number of H atoms, ∆ti the time elapsed during the
ith frame (calculated using Eq. (1.2)), rαβi the distance between the αth and βth H atom during
frame i and ttot =

∑frames
i ∆ti the total elapsed time. This is equivalent to the standard form of

the radial distribution function however, each frame of the simulation is weighted by the time
elapsed during that frame instead of unity. The results are presented in Fig. 5.1, alongside a
comparison to the expectation RDF for uniformly distributed hydrogen in the ideal BCC lattice
under the minimum image convention in an equivalent supercell.

In Fig. 5.1 we see strong agreement between the RDFs across the three simulations, this
further justifies the shorter simulated times of the 3H and 4H runs. Two clear deviations from
the expectation RDF are evident. Firstly, at small r the RDF is much higher than expected
with a large peak centred on 2.13Å. This peak is a combination of the 4nn peak at 2.02Å
(displaced slightly apart due to the finite size of the H atoms) and the 5nn peak at 2.26Å (pulled
closer together by H-H attraction). Even as a composite g is still much larger than expected and
therefore implies the H atoms clustered together. This is supported by the clear depletion of H,
relative to the expectation, beyond r = 6Å caused by this clustering. Similar clustering has been
observed by others [80] using these EAM potentials [75] therefore, this unphysical behaviour is
attributed as an artefact of the potential. It does not appear to have introduced any bias into the
diffusivity measurements however, adopting an additional H-H repulsive component into the
potential [80] seems a sensible improvement for future experiments.

Secondly, none of the H atoms approach closer than the 4nn position during any of the
simulations. This can be attributed to a high energy barrier due to strong H-H repulsion at
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Fig. 5.1 Radial distribution functions for H atoms diffusing in the perfect lattice, calculated using
Eq. (5.1) and the data gathered in the stimulations from Table 5.1. For reference the expectation radial
distribution function for a uniform distribution of H atoms occupying tetrahedral interstices in the BCC
lattice is plotted with a dashed black line.

small separations. This is in perfect agreement with the Switendick criterion which states the
minimum H-H separation is 2.1Å [76].

Beyond r = 6Å the simulated RDF matches the expectations shape very closely, the only
difference is depletion due to the clustering discussed above. This is because the cut-off radius
for H-H interaction is 6Å hence, there is no attraction between the hydrogen atoms beyond this
separation and (as the perturbation to the α-Fe lattice by hydrogen is small and local) so the H
atoms adopt the expectation separations.

5.2 Vacancy diffusion in the α-Fe lattice
The motion of point defects plays a role in the deformation of crystalline materials and simulating
their behaviour is the starting point for modelling extended crystalline defects. The effects of
hydrogen on point defect mobility is likely to play a role in HE, the first step to understanding
this interaction is to investigate the hydrogen-free mobility of di-vacancy clusters to establish a
baseline. Off-lattice kinetic Monte Carlo is uniquely suited to this task due to the increasing
mechanism diversity that develops for larger clusters that is difficult to predict ab initio.

Identification of the vacancy/vacancies location during a simulation is more complex than
tracking a particle whose position is explicitly tracked hence, the process was split in two stages.
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Fig. 5.2 Section of the BCC lattice with the first five nearest-neighbours (nn) marked with red arrows.
A di-vacancy cluster with vacancies at either end of the 2nn arrow would be denoted 2nn di-vacancy.
Vacancies predominantly migrate through 1

2 ⟨111⟩ transitions, e.g moving along the 1nn arrow. The α-Fe
lattice parameter is 2.8557Å. The first five nearest-neighbour separations are: 2.47, 2.86, 4.04, 4.74 &
4.95Å, respectively.

First, all uncoordinated Fe atoms (less than 8 neighbours) are identified using the LCR method.
Second, the under-coordinated atoms positions were passed through the k-means clustering
algorithm, converging onto a predetermined number of vacancies. The k-means algorithm is
a well-established algorithm for clustering arbitrary dimensional data, for a full description
see Peña, Lozano, and Larrañaga [69]. In brief, the k-means algorithm is a rapidly converging,
iterative process to partition a set of points into k sets, which minimises the sum of the squared
Euclidean norm between each point and the centroid of its set. To reduce the risk of relabelling
vacancies between steps, the initial position of the k-means was taken as the final position at the
previous frame.

5.2.1 Mono-vacancy
We begin with the simplest case, the mono-vacancy cluster, whose mechanism and diffusion
barriers have been discussed in Section 4.1.2. The results of the vacancy diffusing for 20s
are presented in Fig. 5.3. The motion of the vacancy during the simulation is entirely via the
1
2 ⟨111⟩ mechanism with an activation energy of 0.534eV. The resulting mean diffusivity was
D = (2.3 ± 0.1) × 10−16m2 s−1 calculated using Eq. (4.2). This corresponds to a diffusivity
prefactor of D0 = (2.15 ± 0.09) × 10−7m2 s−1 where D0 is defined using the familiar Arrhenius
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Fig. 5.3 Mono-vacancy cluster diffusing in the perfect 73 unit-cell lattice at 300K with an Arrhenius
pre-factor of 5.12 × 1012Hz over approximately 2 million Monte Carlo steps. This required approximately
80 hours of total run-time on a quad-core Intel® Xeon® at 3.10GHz. Dashed line is the expectation
squared displacement using the mean simulated diffusivity of D = 2.3 × 10−16m2 s−1 and the Einstein
diffusion equation.

relationship:

D = D0e
−Ea
kBT (5.2)

This is close to the value reported by Messina et al. of D0 = 4.73 × 10−7m2 s−1 [55].
Off-lattice KMC offered no advantage here over traditional KMC, as there was only one

dominant mechanism however, it is positive to see a method with the generality of MD achieving
the simulation timescales of KMC, of the order of seconds. These longer timescales were
accessible due to the topological caching; the periodic boundary conditions mean the supercell
is in a topologically equivalent state after a 1

2 ⟨111⟩ vacancy migration. Therefore, SP searches
were only required at the very beginning of the simulation, massively accelerating the simulation
speed. As such, these results highlight the need for topology caching in any OLKMC hoping to
reach traditional KMC timescales.

As is to be expected, due to the much higher activation energy, the diffusivity of vacancies
is orders of magnitude slower than hydrogen. This presents an issue if we wish to simulate
vacancies moving in the presence of hydrogen as almost all CPU time would be spent tracking
the (less interesting) motion of the hydrogen atoms.
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Fig. 5.4 Di-vacancy cluster diffusing in the perfect 73 unit-cell lattice at 300K with an Arrhenius pre-factor
of 5.12 × 1012Hz over approximately 4 million Monte Carlo steps. This required approximately 160
hours of total run-time on a quad-core Intel® Xeon® at 3.10GHz. As the two vacancies were not bound
into a di-vacancy during the entire simulation, no expectation displacement is plotted.

5.2.2 Di-vacancy
The second experiment was the more interesting case of di-vacancy diffusing in the pure α-Fe
lattice. The most stable configuration for a di-vacancy is the 2nn pair followed by the 1nn then
4nn orientations [20]; see Fig. 5.2 for a diagram of these configurations.

The simulation was started with the vacancies in the 2nn position. The displacements of the
two vacancies are presented in Fig. 5.4. The diffusivity was again calculated using Eq. (4.2)
however, only data points where the vacancies were close enough to be a considered a di-vacancy
(5nn or closer) were used; the resulting diffusivity was D = (1.3 ± 0.1) × 10−16m2 s−1.

The predominant diffusion mechanism observed was the 2nn to 4nn transition, with an
energy barrier of 0.531eV. This is counter intuitive as one may expect the transition to the lower
energy 1nn di-vacancy to have a lower energy barrier however, the 2nn to 1nn transition has
an energy barrier of 0.611eV thus occurring infrequently. Therefore, the resulting diffusivity
prefactor is D0 = (1.1 ± 0.1) × 10−7m2 s−1.

The diffusion barrier is very close to the diffusion barrier for the single vacancy, this
may be an artefact of the EAM potential as ab initio studies typically predict an energy
barrier 0.05–0.11eV [19, 28] lower for the di-vacancy. Nevertheless, the resulting diffusivity



5.2 Vacancy diffusion in the α-Fe lattice 56

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
ise

d
co
un

t

Di-vacancy
Tri-vacancy

2.
08

2.
39

2.
69

3.
00

3.
30

3.
60

3.
91

4.
21

4.
52

4.
82

5.
13

5.
43

5.
74

6.
04

6.
35

6.
65

6.
96

7.
26

7.
56

7.
87

8.
17

8.
48

8.
78

9.
09

9.
39

9.
70

Vacancy-Vacancy separation/Å

0.0

0.2

0.4

0.6

0.8

Ti
m
e
fra

ct
io
n

Di-vacancy
Tri-vacancy

Fig. 5.5 Occurrence count and occupation time of the vacancy-vacancy (minimum image) separation
during the di-vacancy and tri-vacancy simulation runs shown in Fig. 5.4 and Fig. 5.7, respectively. See
the text for relation between measured vacancy-vacancy separation and nearest-neighbour positions in
Fig. 5.2.

prefactor is in agreement with the literature, which ranges from D0 = 1.1 × 10−7m2 s−1 to
D0 = 4.8 × 10−7m2 s−1 [20].

Figure 5.5 presents a histogram of the occurrence count and occupancy time of di-vacancy
states defined by the separation between the vacancies. Due to using the k-means algorithm
to locate the vacancies, the vacancy-vacancy separation does not directly correspond to the
nearest-neighbour (nn) separations in Fig. 5.2: the small peak at 2.7Å is due to 1nn di-vacancies;
the peak at 4Å corresponds to 2nn di-vacancies and the two peaks at 4.6Å and 4.9Å are due
to 4nn di-vacancies and a transition state from 2nn to 4nn. We see that the most commonly
occurring di-vacancies are 4nn and 2nn, while the count of 1nn di-vacancies is very low. This
confirms that di-vacancies predominately diffuse by oscillating between the 4nn and 2nn states.
Most strikingly in Fig. 5.5, the time spent in the 4nn state is many orders of magnitude lower,
this is because the energy barrier for the transition from 4nn to 2nn is only 0.359eV thus, the
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4nn di-vacancy is a relatively short-lived state. This is to be expected as 4nn di-vacancy is
higher energy than the 1nn and 2nn vacancies and – obeying Boltzmann’s statistics – must be
less probable in equilibrium.

The reason for the reduced diffusivity compared to the single vacancy, even though the
diffusion barriers are almost identical, is due to the di-vacancy first requiring a transition from
2nn to 4nn with almost the same probability as the mono-vacancy followed by the reverse 4nn
to 2nn transition. Even though this second transition occurs almost instantly compared to the
rate of the first it has a ≈ 50% chance of returning the di-vacancy to the original position and a
≈ 50% chance of moving the di-vacancy along the ⟨111⟩ direction. Therefore, the di-vacancy
diffuses approximately twice as slowly.

Off-lattice KMC has correctly identified the counter-intuitive diffusion mechanisms of
the di-vacancy. Although, this could have been captured with traditional KMC and careful
DFT analysis, it arises naturally here without any special modifications or care. It is worth
highlighting that simplified models for predicting energy barriers in KMC such as [20, 7]:

Ea = E0 +
Ef − Ei

2
(5.3)

with E0 a constant and Ef , Ei the energy of the final and initial states, respectively, would
have incorrectly caused a traditional KMC simulation to predict diffusion predominantly via
oscillating between the 2nn and 4nn positions. Additionally, for larger and more complex
systems, DFT run times may be out of reach for predicting energy barriers ab initio. This
increases the risk of identifying incorrect mechanisms for traditional KMC. We are limited here
in the accuracy of the measured diffusivity but, this is a limitation of the potentials used and
will be overcome as Fe-H potentials are developed.

5.2.3 Tri-vacancy
The tri-vacancy was the largest vacancy cluster investigated. Figure 5.7 shows the results of
three vacancies, initially started with a pair in the 2nn orientation and the third a few lattice
vectors away from the pair, diffusing in the perfect lattice. During the first 10−3s a few higher
energy (0.4–0.5eV) barriers are crossed, resulting in the formation of a tri-vacancy. The lowest
energy conformation of the three vacancies is sketched in Fig. 5.6a. This matches theoretical
predictions [28] and is the conformation that minimises the distance between all three vacancies
thus, allowing the lattice the largest volume to relax into. From this point the tri-vacancy
diffuses through the lattice without disassociating for the remainder of the simulation.
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(a) (b) (c) (d)

Fig. 5.6 The three most common mechanism encountered during the simulated tri-vacancy diffusion
discovered with the dimer method during the run. Blue circles mark a vacant lattice site; white circle
represent an occupied lattice site. Perturbations to the lattice have been omitted for clarity. Each pair of
diagrams represent a beginning and end state (left to right) with the arrow in the initial state marking the
path of the vacancy during the mechanism. The energy barriers for the three mechanisms are: Fig. 5.6a to
Fig. 5.6b, Ea = 0.301eV; Fig. 5.6b to Fig. 5.6c, Ea = 0.323eV and Fig. 5.6c to Fig. 5.6d, Ea = 0.466eV.

The predominant diffusion mechanism is sketched in Fig. 5.6a & Fig. 5.6b and has a
diffusion barrier of 0.301eV. This is significantly lower than the di-vacancy and mono-vacancy
diffusion barriers and quantitatively matches DFT predictions of 0.34eV [28] but is often not
captured in other adaptive kinetic Monte Carlo models [55].

The calculated diffusivity, D = (1.8 ± 0.2) × 10−13m2 s−1, is three orders of magnitude
higher than di-vacancies and mono-vacancies. This corresponds to a diffusivity prefactor
of D0 = (2.0 ± 0.5) × 10−8m2 s−1 which is within the wide range of values presented in the
literature of 0.2 × 10−8m2 s−1 to 11.2 × 10−8m2 s−1 [55, 19, 66]. It is surprising to find that
larger vacancy clusters are more mobile than their smaller equivalents as typically larger objects
diffuse slower. Other studies have shown this trend reverse (to the expectation) for larger
vacancy clusters; the energy barrier for five and six vacancy clusters correspondingly increasing
to 0.88eV and 1.11eV, respectively [19].

Additionally, the tri-vacancy occasionally undergoes a mechanism with a slightly higher
energy barrier of 0.323eV, detailed in Fig. 5.6b & Fig. 5.6c. This mechanism is absent from
other KMC studies, tending to focus on only the lowest energy barrier mechanisms, and could
explain why the measured diffusivity prefactor is toward the higher end of the range reported in
the literature.

The steps visible in Fig. 5.7 are due to a final, rarely occurring, mechanism with an energy
barrier of 0.466eV. This mechanism is detailed in Fig. 5.6c & Fig. 5.6d and is the only
mechanism observed to move the three vacancies out of their lowest energy configuration.
When this occurs the tri-vacancy becomes pinned, unable to diffuse via the fast conservative
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Fig. 5.7 Tri-vacancy cluster diffusing in the perfect 73 unit-cell lattice at 300K with an Arrhenius pre-
factor of 5.12 × 1012Hz over approximately 3 million Monte Carlo steps. This required approximately
90 hours of total run-time on a quad-core Intel® Xeon® at 3.10GHz. Dashed line is the expectation
squared displacement using the mean simulated diffusivity of D = 1.8 × 10−16m2 s−1 and the Einstein
diffusion equation over the range where the three vacancies were bound into a tri-vacancy.

0.301eV or 0.323eV mechanisms, until the lowest energy configuration reforms. This causes
the steps in Fig. 5.7 while the tri-vacancy remains stationary.

Figure 5.5 additionally contains the occurrence count and occupancy time of the tri-vacancy
states, as a consequence of the increased number of under-coordinated atoms the k-means
algorithm struggles to cleanly identify individual vacancy locations. This, unlike the di-
vacancy, manifests as a broadening of the possible vacancy-vacancy separations to occupy a
more continuous range of values. The distribution of separations centred around 3.8Å in the
occurrence count histogram correspond to the separations in the lowest energy tri-vacancy
state. Similar to the di-vacancy case these are under-represented in the time fraction histogram
due to the pinned state (which has larger vacancy-vacancy separations) occupying a larger
fraction of the simulated time each time it occurs. The k-means algorithm was less capable of
distinguishing the vacancies position as the size of the vacancy cluster increased, this would
need to be improved to investigate larger vacancy clusters.

Once again OLKMC has correctly identified the primary diffusion mechanism, as well
as correctly predicting a significantly lower energy barrier than single and di-vacancies.
Furthermore, OLKMC has identified two additional mechanisms not typically accounted for in
traditional KMC experiments, one of which helps to explain the elevated diffusivity compared
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Fig. 5.8 Mono-vacancy cluster and a single H atom diffusing in the the perfect 73 unit-cell lattice at 300K
with an Arrhenius pre-factor of 5.12 × 1012Hz over approximately 1 million Monte Carlo steps. This
required approximately 75 hours of total run-time on a quad-core Intel® Xeon® at 3.10GHz. The KMC
algorithm was accelerated with the superbasin dynamics algorithm, detailed in Section 3.6. Dashed
lines are the expectation squared displacement using the mean simulated diffusivities and the Einstein
diffusion equation.

to the literature. The absence of these mechanisms in the literature highlights the difficulty in
predicting mechanisms using intuition and DFT + NEB methods. However, we must be wary of
the small probability these mechanisms and/or their energy barriers are an artefact of the EAM
potential; verification with DFT would be a sensible future extension. Finally, if we were to
continue to larger vacancy clusters, is reasonable to assume that the mechanisms would follow
the pattern of diversifying, rapidly reaching a point outside the reach of traditional KMC and
DFT.

5.3 Vacancy-hydrogen complexes
To simulate the interaction between vacancies and hydrogen into the long timescale and avoid
the low barrier problem, we use the superbasin KMC algorithm discussed in Section 3.6.
We repeated the simulations from Fig. 5.3 (mono-vacancy) and Fig. 5.4 (di-vacancy) with a
single hydrogen atom added to the supercell, the results are presented in Fig. 5.8 and Fig. 5.9,
respectively. In both simulations the H atom was initialised in a trapped state near the centre of
the defect.
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Fig. 5.9 Di-vacancy cluster and a single H atom diffusing in the the perfect 73 unit-cell lattice using the
same conditions as Fig. 5.8 over approximately 1 million Monte Carlo steps. This required approximately
105 hours of total run-time on a quad-core Intel® Xeon® at 3.10GHz. Dashed lines are the expectation
squared displacement using the mean simulated diffusivities and the Einstein diffusion equation. The
first several hundred frames (in which the simulation clock increased by less than 10−10s) have been
omitted for clarity.

Figure 5.8 highlights the huge range of timescales accessible with this method. Initially, the
H atom explores the 6 trapping states and 24 low-barrier transitions inside the vacancy then
crosses several high energy barriers, attempting to escape the superbasin, but continually falls
back in. Eventually, the H atom escapes the vacancy and diffuses through the lattice until it is
trapped at another vacancy and the cycle repeats; this causes the steps in Fig. 5.8. Occasionally
the escape mechanism includes a 1

2 ⟨111⟩ vacancy migration, causing the vacancy to diffuse as
well as the H atom. The vacancy and hydrogen diffusivities calculated as in Section 5.2.1 are
presented in Table 5.2.

Similar events occur in Fig. 5.9 however, in the 2nn di-vacancy superbasin there exists 14
trapping states and many low-barrier transitions. Furthermore, the 1nn and 4nn di-vacancies
have corresponding superbasins associated with them; the increased size and diversity of the
superbasins causes the even larger stepping in Fig. 5.9. Again, the vacancy and hydrogen
diffusivities calculated as in Section 5.2.2 are presented in Table 5.2.

From Table 5.2 we see the presence of the hydrogen has reduced the diffusivity of both the
mono and di-vacancy, both have fallen by approximately a factor of 25. To understand this,
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Fig. 5.10 Histogram of energy barriers encountered during the simulated vacancy-hydrogen complex
diffusion in Fig. 5.8 and Fig. 5.9. The graph has been truncated along the y-axis such that the lower
occurrence bins are visible, the truncated bin at 0.038eV extends to a normalised count of 80.

we analyse the distribution of energy barriers encountered during the simulation presented in
Fig. 5.10.

For the mono-vacancy the highest peak (truncated) in Fig. 5.10 is the 0.038eV bin,
corresponding to hydrogen diffusing in the lattice. The other significant peaks of interest
are: a sharp peak in the 0.002eV bin corresponding to a low barrier flicker between two H
atom positions just outside the vacancy; the 0.062eV bin corresponding to the barrier between
trapping states; the peak at 0.53eV is the detrapping barrier as the H atom moves from inside
the vacancy to an adjacent tetrahedral site and finally, the peak at 0.56eV is the barrier for a
1
2 ⟨111⟩ vacancy migration. The remaining visible peaks correspond to hydrogen tetrahedral→
tetrahedral transitions with modified energy barriers near the vacancy.

For the di-vacancy the peaks in Fig. 5.10 correspond to similar mechanisms however, there is
now a much greater diversity of mechanisms both inside and immediately outside the superbasin.
The new peaks of interest are: the two peaks at 0.45 and 0.46eV, which are the detrapping
barriers as the H atom escapes the 2nn di-vacancy, while the peaks from 0.54–0.56eV are
detrapping barriers from other di-vacancy configurations; the three peaks between 0.34–0.36eV
are 4nn→ 2nn di-vacancy migrations when the moving vacancy does not contain the H atom;
the tiny peak at 0.38eV is the 4nn→ 2nn di-vacancy migration when the moving vacancy does
contain the H atom and finally, the peak at 0.53eV is the 2nn→ 4nn di-vacancy migration. In
all 4nn→ 2nn migrations the H atom remains trapped in the vacancy that did not move.
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Table 5.2 Summary of defect and hydrogen diffusivities during the simulations in Fig. 5.8 and Fig. 5.9.
Additionally. the theoretical effective hydrogen diffusivities calculated using Oriani’s trapping theory [64]
and the data in Table 5.3 are presented for comparison.

Defect Diffusivity, D/m2 s−1

Defect without H Defect with H Deff of H DOr.
eff of H

Mono-vacancy 2.3 × 10−16 1.2 × 10−17 2.1 × 10−15 5.4 × 10−15

Di-vacancy 1.3 × 10−16 3.7 × 10−18 4.0 × 10−16 4.9 × 10−16

We can now clearly see the reason for the fall in diffusivity of the mono-vacancy is the
increase in the energy barrier of the 1

2 ⟨111⟩ vacancy migration. The case for the di-vacany is
more complex as the 2nn→ 4nn migration barrier remains the same as in the hydrogen free
simulation. Instead, the increase in the 4nn→ 2nn barrier, being only in the case when the
migrating vacancy contains the hydrogen, biases the vacancy to reform into its original 2nn
configuration rather than forming a 2nn di-vacancy displaced by 1

2 ⟨111⟩. This in turn reduces
the diffusivity of the di-vacancy.

The most extreme results in Fig. 5.9 are the effective hydrogen diffusivities which have
fallen by seven orders of magnitude, compared to the calculated diffusivity in the perfect lattice
of 7.4 × 10−9m2 s−1. This may seem like an unphysical reduction however, we must remember
the defect concentration is exceptionally high, around 200mol m−3. We can compare our results
with Oriani’s trapping theory which states [64]:

θx

1 − θx
=
θL

1 − θL e−
EB
KBT (5.4)

where EB is the trap binding energy and θx , θL are the fractional occupancy of available trap
and regular lattice hydrogen sites, respectively. In this case we assume the trap binding energy
is equivalent to the hydrogen detrapping barrier, this is true within a few multiples of the lattice
hydrogen diffusion barrier. Furthermore, the effective diffusivity of hydrogen in the presence of
traps, DOr.

eff , is predicted to obey [64]:

DOr.
eff = D

NLθL
NLθL + Nxθx(1 − θx) (5.5)

with Nx , NL the number of trap and regular lattice sites per unit volume and D the diffusivity of
hydrogen in the perfect lattice. To obtain the average fractional occupancy of trap and regular
lattice sites over the course of the entire simulation we partition the frames into two sets: frames
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Table 5.3 Summary of the time the H atom in Fig. 5.8 and Fig. 5.9 spent in trap/lattice sites during
the simulations, used to calculate the effective diffusivity alongside Oriani’s trapping theory [64].
Additionally, the range of detrapping barriers from Fig. 5.10 are provided for comparison.

Defect tx/s tL/s EB/eV EOr.
B /eV

Mono-vacancy 4.535 × 10−1 2.749 × 10−7 0.53 0.54
Di-vacancy 1.952 × 10−1 1.210 × 10−8 0.45–0.56 0.58

with the defect-H separation less than 2 or 5Å for the mono and di-vacancy respectively and
vice versa. The total time spent in each partition, tx and tL , are presented in Table 5.3 and
relate directly to θ and N via1:

tx

tx + tL
= Nxθx and

tL
tx + tL

= NLθL (5.6)

Using this we can compute the expectation trapping energy EOr.
B presented in Table 5.3, as well

as the theoretical effective diffusivity DOr.
eff in Table 5.2.

The agreement between Oriani’s theory and our simulated results in Table 5.2 is excellent.
For both crystal defects Oriani’s estimate is marginally higher but, given the change between
Deff and D is orders of magnitude, this is to be expected. The agreement for the detrapping
barrier/trap binding energy in Table 5.3 is also excellent for the mono-vacancy. However, for the
di-vacany EOr.

B is significantly higher. This is probably because Oriani’s theory is a model for
homogeneous trapping however, during the simulation the di-vacancy transforms between the
1nn, 2nn and 4nn states all of which have different trapping energies. Therefore, the di-vacancy
simulation is a heterogeneous trapping problem and we see Oriani’s theory beginning to break
down. Furthermore, Oriani’s theory is based on thermodynamic equilibrium which may not
have been reached in these simulations. This is reason to be careful when applying Oriani’s
theory to real steels which have a huge variety of crystal defects thus are clearly heterogeneous
trapping problems.

The small increase in the mono-vacancy migration energy barrier and corresponding
decrease in diffusivity mirrors Benediktsson et al. [9] results for hydrogen in aluminium. If
higher hydrogen loading of vacancies causes them to become pinned, as Benediktsson et al.
observed in aluminium, then this could act as a possible mechanism for HE. Sessile vacancies
could act as nucleation sites for extended crystal defects or nucleation sites for nanovoids [9].
The former could imply an increased localised plasticity and contribute towards the HELP

1For simplicity, as there is only a single H atom, the dimensional-correcting number density of hydrogen has
been omitted.
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mechanism, should additional dislocations be generated. The latter, especially in combination
with the observed superabundance of vacancies in hydrogen charged steels [78, 51, 61], helps
to explain nanovoid formation and coalescence and contributes towards the HESIV mechanism.

In summary, Figure 5.10 has again highlighted the increase in mechanism diversity as the
crystal defect structure becomes more complex. Attempting to model this with traditional KMC
would require simplification, of the possible mechanisms and states, likely resulting in a failure
to capture the full systems behaviour. Furthermore, the timescales reached in these simulations
are out of reach of current MD, making superbasin-accelerated OLKMC the best and most
general alternative.



Chapter 6

Conclusions & Future work

6.1 Conclusions
We have built, from the ground up, an implementation of the off-lattice kinetic Monte Carlo
model, that is capable of simulating the Fe-H system. Many optimisations and enhancements to
the OLKMC method, which have been developed over the last 20 years, have been incorporated
and extended. We have validated our model, simulating diffusion of vacancies and hydrogen in
the α-Fe lattice, as well as probed more involved vacancy-hydrogen complexes. Our key results
include:

• We demonstrated OLKMC can reproduce the simulated diffusivity of single and multiple
H atoms, with a final calculated value of D = (7.4 ± 0.7) × 10−9m2 s−1 at 300K.

• We used OLKMC to simulate the kinetics of: single vacancy, di-vacancy and tri-vacancy
clusters. Alongside, calculating their diffusivity prefactors and finding them within
the range of the literature values. These experiments had no pre-conceived notion
of the diffusion pathways the defects follow, yet were able to accurately predict the
predominant diffusion mechanisms for all cases. This includes the counter-intuitive case
of the di-vacancy, primarily migrating by oscillating between 2nn and 4nn configurations.
Furthermore, the sharp-drop in the energy barrier to migration for the tri-vacancy,
compared to the di-vacancy, was accurately predicted, falling from 0.53eV to 0.30eV,
respectively.

• Simulating hydrogen diffusion, including trapping and detrapping, in the presence of a
vacancy and a di-vacancy, into timescales of the order of seconds. The effective diffusivity
of hydrogen in these environments was shown to be orders of magnitude less than the
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perfect lattice, a strong trapping effect. Comparisons to Oriani’s trapping theory [64]
showed excellent agreement, validating the method.

• Simulating the effect of a single H atom on the diffusivity of a vacancy and a di-vacancy,
into timescales of the order of seconds. In both cases hydrogen reduced their diffusivity
by a factor of approximately 25. Furthermore, we were able to probe the exact hydrogen-
induced mechanisms causing this reduction, which were different for each defect. These
results were linked back to HE, potentially contributing to the HESIV mechanism.

Some of these results, particularly the effects of hydrogen on the kinetics of vacancies, are
not possible to achieve with any other current method, while capturing the same diversity of
mechanisms and reaching equivalent timescales. This is extremely promising for the future of
modelling defect-H interactions. Moreover, it should be possible to extend OLKMC to simulate
extended crystal defects such as dislocations and grain boundaries. This should give more
insights into the HELP and other mechanisms of HE.

Importantly, our results have been made possible by our contributions to the OLKMC
methodology, specifically:

• Bringing together enhancements to the dimer method, from across the literature [37, 39,
45, 88], as well as refining the line-search method used in conjunction with L-BFGS
optimiser.

• Expanding El-Mellouhi, Mousseau, and Lewis’s topological caching method to incor-
porate more information about the local geometry, allowing us to perform topological
caching of saddle-points in the Fe-H system. This is a more difficult system to implement
topological caching, as the small size of hydrogen atoms, induce only small perturbations
to the surrounding Fe atoms positions.

• Re-phrasing the mean rate method, by additionally partitioning mechanisms into transient
and absorbing categories, such that it can be efficiently applied to an OLKMC which
uses topological SP caching, allowing us to overcome the low-barrier problem while
simulating V-H complexes.

The limiting factor underlying our work was the semi-empirical potentials however, the
correctness of our method is independent from the underlying potentials. Hence, the accuracy
of OLKMC results will only improve, as better Fe-H potentials are developed. Nevertheless,
our results illustrate, even with today’s potentials, OLKMC can be used to push forward our
understanding of the defect-H interactions, that underpin hydrogen embrittlement.
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6.2 Future work
Many enhancements to the OLKMC method and implementation, which could significantly
reduce run times and allow the simulation of many more atoms or improve the accuracy of
results, have yet to be fully explored:

• We already make (and verify) the assumption that mechanisms are sufficiently local to
be captured within rtopo of the maximally displaced atom. It would be a straightforward
extension to define a second (larger) radius that limits the atoms that can take part in each
SP search. This would make SP searches scale as a constant with the number of atoms in
the simulation, instead of linearly.

• If the initial local environment/topology has any symmetries, it is likely any mechanism
from this state has corresponding mechanisms, related by those same symmetries. These
symmetries (rotations, reflections) are already captured in the graph representation (by
construction) and during topological caching, we already obtain the automorphism group
of the graph. These automorphisms could be used to calculate the transformations
required to map the displacement vectors for each mechanism onto its corresponding
symmetrically-related mechanisms. This would reduce the number of SP searches
required for highly symmetric topologies.

• As discussed in Section 1.2.1, the Arrhenius prefactor could be calculated for each
mechanism, this would improve the accuracy of the model. Furthermore, if the normal-
modes of the initial state and saddle-points could be associated with their topological
keys, much of the introduced computational overhead could be avoided by caching
normal-modes.

• As we create a catalogue of encountered topologies, it becomes possible to identify those
that occur frequently. This could be used to run SP searches with better force fields
(e.g. ab initio DFT forces) and refine energy barriers for the most important (frequent)
topologies on-the-fly.

• Currently SP searches incorporate no knowledge of other SP searches performed from the
same basin, they are completely independent. This results in many SP searches converging
to the same saddle points, wasting compute cycles. One possibility could be searching
for multiple saddle-points simultaneously, akin to a particle swarm optimiser [44], with a
repulsive component between dimers.
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• Due to the complete independence between SP searches we currently trivially-employ
parallelism via the shared-memory paradigm. To scale onto multi-node supercomputers
the distributed-memory programming model must be adopted. However, the limitation
of not being able to scale onto more CPU’s than SP searches launched per topology,
would still exist. This could be overcome with multi-level parallelism, distributing the
work of a single SP search over multiple CPU’s on single node, this would require more
synchronisation primitives.

• Currently the initial displacements for the SP searches are random, others have demon-
strated improved results using more complex techniques, such as choosing points
equidistributed on the surface of a hypersphere [34]. This, alongside exploring possible
pre-conditioners [57, 10], are strong avenues for investigation.

• Finally, others have demonstrated GPU accelerated EAM force calculations for MD [87].
This could be used during SP searches (or perhaps SP searches could be conducted
entirely on the GPU) to fully utilise available hardware.

Due to the off-lattice nature of the OLKMC framework, it extends naturally to strained
systems. Therefore, exploring the kinetics of strained systems (relevant to HE), historically
dominated by MD simulations, is the direction we shall take in the immediate future. Specifically,
the effect of hydrogen on the strained lattice surrounding a crack tip and vacancies interacting
with grain-boundaries strain-fields, are key targets.

In conclusion, the ceiling for OLKMC modelling is high above the current best. Long-
timescale simulations of defect-H systems, critical to understanding hydrogen embrittlement,
are almost within reach.
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Appendices

A.1 Partial vector-derivative of the line between atoms
Here we derive Eq. (3.5), repeated below for convenience:

∂rαβ

∂rγ
=

(
δγβ − δγα

)
r̂αβ (A.1)

where rα is the position vector of the αth atom, rαβ =
rαβ = r β − rα

 and δ is the Kronecker
Delta. Through the next section we use: Greek superscripts to denote the atom index without
implied Einstein summation; Roman subscripts to denote the component of a vector with
implicit Einstein summation over repeated indices. With this notation:

∂rαβ

∂rγi
=
∂

∂rγi

√
rαβj rαβj =

1

2
√

rαβj rαβj

∂

∂rγi

(
rαβj rαβj

)
=

1
rαβ

(
rαβj
∂

∂rγi
rαβj

)
(A.2)

then expanding rαβj = r βj − rαj :

∂rαβ

∂rγi
=

rαβj

rαβ
©«
∂r βj
∂rγi
−
∂rαj
∂rγi

ª®¬ =
rαβj

rαβ

(
δγβδi j − δγαδi j

)
=

rαβi

rαβ

(
δγβ − δγα

)
(A.3)

which is the component form of Eq. (3.5).
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A.2 An integer sorting algorithm for the LCR method

Algorithm A.1 In-place counting sort.

procedure Sort(list,key,M) ◃ key : list[i]→ {0,1, . . . ,M − 1}.
offset[0,1, . . . ,M − 1]← 0;
for each x in list do ◃ Count occurrences of each value.

v ← key (x)
offset[v]← offset[v] + 1

s← 0 ◃ Holds partial sum.
for i ← 0,1, . . . ,M − 1 do ◃ Compute offsets, cumulative sum of counts.

t ← offset[i] ◃ t is a temporary to shift cumulative sum.
counts[i]← s

s← s + t

next← offset ◃Makes copy.
s← 0 ◃ Now counts how many swaps we have performed
while s , length of list do

for g ← M − 1,M − 2, . . . ,1 do
for i ← offset[g] − 1,offset[g] − 2, . . . ,next[g − 1] do

swap(list[i], list[next[key(list[i])]++])
s← s + 1

As discussed in Section 3.2 the LCR method requires sorting an array of atoms into their Λ
ordering. A standard integer sorting algorithm such as a radix [47, p. 168] or hash [31] sorting
could be used however, there are domain specific constraints to be exploited. Firstly, the number
of atoms is much greater than the number of cells n ≈ 25M such that, the range of possible
values is much less than the number of items to sort. Secondly, we expect the atoms to only
move a small distance between each sort hence, the list will be approximately sorted most of
the time.

We devise an in-place variation of a counting sort [79, p. 312], detailed in Algorithm A.1,
that achieves O(n) time complexity with only O(M) additional memory and exhibits particularly
good performance for nearly sorted data. Performance analysis confirmed our algorithm
outperformed built-in sorting functions for our (specific) use-case.
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A.3 Wolfe conditions on line-searches
The strong Wolfe conditions for an inexact line search of the objective function f are [84, 85]:

f (xk + αkpk) ≤ f (xk) + c1αk∇ f (xk)Tpk (A.4)��∇ f (xk + αkpk)T pk
�� ≤ c2

��∇ f (xk)Tpk
�� (A.5)

where the constants c1, c2 satisfy 0 < c1 < c2 < 1. Equation (A.4) is called the sufficient
decrease condition and ensures the step suitably reduces the objective function. Eq. (A.5) is
called the curvature condition and ensures the step is not too small. Together with a reasonable
choice of decent direction the Wolfie conditions can ensure a gradient descent algorithm
converges in a finite number of steps [59]. The choices of the constants c1 and c2 used in this
work were 10−4 and 0.9 respectively.
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